Results 1 - 10
of
333
Semi-Supervised Learning Literature Survey
, 2006
"... We review the literature on semi-supervised learning, which is an area in machine learning and more generally, artificial intelligence. There has been a whole
spectrum of interesting ideas on how to learn from both labeled and unlabeled data, i.e. semi-supervised learning. This document is a chapter ..."
Abstract
-
Cited by 782 (8 self)
- Add to MetaCart
We review the literature on semi-supervised learning, which is an area in machine learning and more generally, artificial intelligence. There has been a whole
spectrum of interesting ideas on how to learn from both labeled and unlabeled data, i.e. semi-supervised learning. This document is a chapter excerpt from the author’s
doctoral thesis (Zhu, 2005). However the author plans to update the online version frequently to incorporate the latest development in the field. Please obtain the latest
version at http://www.cs.wisc.edu/~jerryzhu/pub/ssl_survey.pdf
Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions
- IN ICML
, 2003
"... An approach to semi-supervised learning is proposed that is based on a Gaussian random field model. Labeled and unlabeled data are represented as vertices in a weighted graph, with edge weights encoding the similarity between instances. The learning ..."
Abstract
-
Cited by 752 (14 self)
- Add to MetaCart
(Show Context)
An approach to semi-supervised learning is proposed that is based on a Gaussian random field model. Labeled and unlabeled data are represented as vertices in a weighted graph, with edge weights encoding the similarity between instances. The learning
Learning with local and global consistency.
- In NIPS,
, 2003
"... Abstract We consider the general problem of learning from labeled and unlabeled data, which is often called semi-supervised learning or transductive inference. A principled approach to semi-supervised learning is to design a classifying function which is sufficiently smooth with respect to the intr ..."
Abstract
-
Cited by 673 (21 self)
- Add to MetaCart
(Show Context)
Abstract We consider the general problem of learning from labeled and unlabeled data, which is often called semi-supervised learning or transductive inference. A principled approach to semi-supervised learning is to design a classifying function which is sufficiently smooth with respect to the intrinsic structure collectively revealed by known labeled and unlabeled points. We present a simple algorithm to obtain such a smooth solution. Our method yields encouraging experimental results on a number of classification problems and demonstrates effective use of unlabeled data.
A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts
- PROCEEDINGS OF THE ACL
, 2004
"... Sentiment analysis seeks to identify the viewpoint(s) underlying a text span; an example application is classifying a movie review as “thumbs up” or “thumbs down”. To determine this sentiment polarity, we propose a novel machine-learning method that applies text-categorization techniques to just the ..."
Abstract
-
Cited by 618 (7 self)
- Add to MetaCart
Sentiment analysis seeks to identify the viewpoint(s) underlying a text span; an example application is classifying a movie review as “thumbs up” or “thumbs down”. To determine this sentiment polarity, we propose a novel machine-learning method that applies text-categorization techniques to just the subjective portions of the document. Extracting these portions can be implemented using efficient techniques for finding minimum cuts in graphs; this greatly facilitates incorporation of cross-sentence contextual constraints.
Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
- JOURNAL OF MACHINE LEARNING RESEARCH
, 2006
"... We propose a family of learning algorithms based on a new form of regularization that allows us to exploit the geometry of the marginal distribution. We focus on a semi-supervised framework that incorporates labeled and unlabeled data in a general-purpose learner. Some transductive graph learning al ..."
Abstract
-
Cited by 578 (16 self)
- Add to MetaCart
(Show Context)
We propose a family of learning algorithms based on a new form of regularization that allows us to exploit the geometry of the marginal distribution. We focus on a semi-supervised framework that incorporates labeled and unlabeled data in a general-purpose learner. Some transductive graph learning algorithms and standard methods including Support Vector Machines and Regularized Least Squares can be obtained as special cases. We utilize properties of Reproducing Kernel Hilbert spaces to prove new Representer theorems that provide theoretical basis for the algorithms. As a result (in contrast to purely graph-based approaches) we obtain a natural out-of-sample extension to novel examples and so are able to handle both transductive and truly semi-supervised settings. We present experimental evidence suggesting that our semi-supervised algorithms are able to use unlabeled data effectively. Finally we have a brief discussion of unsupervised and fully supervised learning within our general framework.
On kernel target alignment
- ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 14
, 2002
"... Kernel based methods are increasingly being used for data modeling because of their conceptual simplicity and outstanding performance on many tasks. However, the kernel function is often chosen using trial-and-error heuristics. In this paper we address the problem of measuring the degree of agreem ..."
Abstract
-
Cited by 298 (8 self)
- Add to MetaCart
Kernel based methods are increasingly being used for data modeling because of their conceptual simplicity and outstanding performance on many tasks. However, the kernel function is often chosen using trial-and-error heuristics. In this paper we address the problem of measuring the degree of agreement between a kernel and a learning task. A quantitative measure of agreement is important from both a theoretical and practical point of view. We propose a quantity to capture this notion, which we call Alignment. We study its theoretical properties, and derive a series of simple algorithms for adapting a kernel to the labels and vice versa. This produces a series of novel methods for clustering and transduction, kernel combination and kernel selection. The algorithms are tested on two publicly available datasets and are shown to exhibit good performance.
Learning from imbalanced data
- IEEE Trans. on Knowledge and Data Engineering
, 2009
"... Abstract—With the continuous expansion of data availability in many large-scale, complex, and networked systems, such as surveillance, security, Internet, and finance, it becomes critical to advance the fundamental understanding of knowledge discovery and analysis from raw data to support decision-m ..."
Abstract
-
Cited by 260 (6 self)
- Add to MetaCart
(Show Context)
Abstract—With the continuous expansion of data availability in many large-scale, complex, and networked systems, such as surveillance, security, Internet, and finance, it becomes critical to advance the fundamental understanding of knowledge discovery and analysis from raw data to support decision-making processes. Although existing knowledge discovery and data engineering techniques have shown great success in many real-world applications, the problem of learning from imbalanced data (the imbalanced learning problem) is a relatively new challenge that has attracted growing attention from both academia and industry. The imbalanced learning problem is concerned with the performance of learning algorithms in the presence of underrepresented data and severe class distribution skews. Due to the inherent complex characteristics of imbalanced data sets, learning from such data requires new understandings, principles, algorithms, and tools to transform vast amounts of raw data efficiently into information and knowledge representation. In this paper, we provide a comprehensive review of the development of research in learning from imbalanced data. Our focus is to provide a critical review of the nature of the problem, the state-of-the-art technologies, and the current assessment metrics used to evaluate learning performance under the imbalanced learning scenario. Furthermore, in order to stimulate future research in this field, we also highlight the major opportunities and challenges, as well as potential important research directions for learning from imbalanced data. Index Terms—Imbalanced learning, classification, sampling methods, cost-sensitive learning, kernel-based learning, active learning, assessment metrics. Ç
Partially labeled classification with Markov Random Walks
- ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS
, 2001
"... To classify a large number of unlabeled examples we combine a limited number of labeled examples with a Markov random walk representation over the unlabeled examples. The random walk representation exploits any low dimensional structure in the data in a robust, probabilistic manner. We develop a ..."
Abstract
-
Cited by 251 (6 self)
- Add to MetaCart
To classify a large number of unlabeled examples we combine a limited number of labeled examples with a Markov random walk representation over the unlabeled examples. The random walk representation exploits any low dimensional structure in the data in a robust, probabilistic manner. We develop and compare several estimation criteria/algorithms suited to this representation. This includes in particular multi-way classification with an average margin criterion which permits a closed form solution. The time scale of the random walk regularizes the representation and can be set through a margin-based criterion favoring unambiguous classification. We also extend this basic regularization by adapting time scales for individual examples. We demonstrate the approach on synthetic examples and on text classification problems.
Transductive Learning via Spectral Graph Partitioning
- In ICML
, 2003
"... We present a new method for transductive learning, which can be seen as a transductive version of the k nearest-neighbor classifier. ..."
Abstract
-
Cited by 237 (0 self)
- Add to MetaCart
(Show Context)
We present a new method for transductive learning, which can be seen as a transductive version of the k nearest-neighbor classifier.
Classification in Networked Data: A toolkit and a univariate case study
, 2006
"... This paper is about classifying entities that are interlinked with entities for which the class is known. After surveying prior work, we present NetKit, a modular toolkit for classification in networked data, and a case-study of its application to networked data used in prior machine learning resear ..."
Abstract
-
Cited by 200 (10 self)
- Add to MetaCart
This paper is about classifying entities that are interlinked with entities for which the class is known. After surveying prior work, we present NetKit, a modular toolkit for classification in networked data, and a case-study of its application to networked data used in prior machine learning research. NetKit is based on a node-centric framework in which classifiers comprise a local classifier, a relational classifier, and a collective inference procedure. Various existing node-centric relational learning algorithms can be instantiated with appropriate choices for these components, and new combinations of components realize new algorithms. The case study focuses on univariate network classification, for which the only information used is the structure of class linkage in the network (i.e., only links and some class labels). To our knowledge, no work previously has evaluated systematically the power of class-linkage alone for classification in machine learning benchmark data sets. The results demonstrate that very simple network-classification models perform quite well—well enough that they should be used regularly as baseline classifiers for studies of learning with networked data. The simplest method (which performs remarkably well) highlights the close correspondence between several existing methods introduced for different purposes—i.e., Gaussian-field classifiers, Hopfield networks, and relational-neighbor classifiers. The case study also shows that there are two sets of techniques that are preferable in different situations, namely when few versus many labels are known initially. We also demonstrate that link selection plays an important role similar to traditional feature selection.