Results 1 - 10
of
459
Domain Adaptation via Transfer Component Analysis
"... Domain adaptation solves a learning problem in a target domain by utilizing the training data in a different but related source domain. Intuitively, discovering a good feature representation across domains is crucial. In this paper, we propose to find such a representation through a new learning met ..."
Abstract
-
Cited by 102 (18 self)
- Add to MetaCart
(Show Context)
Domain adaptation solves a learning problem in a target domain by utilizing the training data in a different but related source domain. Intuitively, discovering a good feature representation across domains is crucial. In this paper, we propose to find such a representation through a new learning method, transfer component analysis (TCA), for domain adaptation. TCA tries to learn some transfer components across domains in a Reproducing Kernel Hilbert Space (RKHS) using Maximum Mean Discrepancy (MMD). In the subspace spanned by these transfer components, data distributions in different domains are close to each other. As a result, with the new representations in this subspace, we can apply standard machine learning methods to train classifiers or regression models in the source domain for use in the target domain. The main contribution of our work is that we propose a novel feature representation in which to perform domain adaptation via a new parametric kernel using feature extraction methods, which can dramatically minimize the distance between domain distributions by projecting data onto the learned transfer components. Furthermore, our approach can handle large datsets and naturally lead to out-of-sample generalization. The effectiveness and efficiency of our approach in are verified by experiments on two real-world applications: cross-domain indoor WiFi localization and cross-domain text classification. 1
Geodesic flow kernel for unsupervised domain adaptation
- In CVPR
, 2012
"... In real-world applications of visual recognition, many factors—such as pose, illumination, or image quality—can cause a significant mismatch between the source domain on which classifiers are trained and the target domain to which those classifiers are applied. As such, the classifiers often perform ..."
Abstract
-
Cited by 97 (6 self)
- Add to MetaCart
(Show Context)
In real-world applications of visual recognition, many factors—such as pose, illumination, or image quality—can cause a significant mismatch between the source domain on which classifiers are trained and the target domain to which those classifiers are applied. As such, the classifiers often perform poorly on the target domain. Domain adaptation techniques aim to correct the mismatch. Existing approaches have concentrated on learning feature representations that are invariant across domains, and they often do not directly exploit low-dimensional structures that are intrinsic to many vision datasets. In this paper, we propose a new kernel-based method that takes advantage of such structures. Our geodesic flow kernel models domain shift by integrating an infinite number of subspaces that characterize changes in geometric and statistical properties from the source to the target domain. Our approach is computationally advantageous, automatically inferring important algorithmic parameters without requiring extensive crossvalidation or labeled data from either domain. We also introduce a metric that reliably measures the adaptability between a pair of source and target domains. For a given target domain and several source domains, the metric can be used to automatically select the optimal source domain to adapt and avoid less desirable ones. Empirical studies on standard datasets demonstrate the advantages of our approach over competing methods. 1.
Cross-domain sentiment classification via spectral feature alignment
- In WWW
, 2010
"... Sentiment classification aims to automatically predict sentiment polarity (e.g., positive or negative) of users publishing sentiment data (e.g., reviews, blogs). Although traditional classification algorithms can be used to train sentiment classifiers from manually labeled text data, the labeling wo ..."
Abstract
-
Cited by 63 (10 self)
- Add to MetaCart
(Show Context)
Sentiment classification aims to automatically predict sentiment polarity (e.g., positive or negative) of users publishing sentiment data (e.g., reviews, blogs). Although traditional classification algorithms can be used to train sentiment classifiers from manually labeled text data, the labeling work can be time-consuming and expensive. Meanwhile, users often use some different words when they express sentiment in different domains. If we directly apply a classifier trained in one domain to other domains, the performance will be very low due to the differences between these domains. In this work, we develop a general solution to sentiment classification when we do not have any labels in a target domain but have some labeled data in a different domain, regarded as source domain. In this cross-domain sentiment classification setting, to bridge the gap between the domains, we propose a spectral feature
Learning object class detectors from weakly annotated video
- IN INTERNATIONAL CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR
, 2012
"... Object detectors are typically trained on a large set of still images annotated by bounding-boxes. This paper introduces an approach for learning object detectors from real-world web videos known only to contain objects of a target class. We propose a fully automatic pipeline that localizes objects ..."
Abstract
-
Cited by 52 (10 self)
- Add to MetaCart
(Show Context)
Object detectors are typically trained on a large set of still images annotated by bounding-boxes. This paper introduces an approach for learning object detectors from real-world web videos known only to contain objects of a target class. We propose a fully automatic pipeline that localizes objects in a set of videos of the class and learns a detector for it. The approach extracts candidate spatiotemporal tubes based on motion segmentation and then selects one tube per video jointly over all videos. To compare to the state of the art, we test our detector on still images, i.e., Pascal VOC 2007. We observe that frames extracted from web videos can differ significantly in terms of quality to still images taken by a good camera. Thus, we formulate the learning from videos as a domain adaptation task. We show that training from a combination of weakly annotated videos and fully annotated still images using domain adaptation improves the performance of a detector trained from still images alone.
A Convex Formulation for Learning Task Relationships in Multi-Task Learning
"... Multi-task learning is a learning paradigm which seeks to improve the generalization performance of a learning task with the help of some other related tasks. In this paper, we propose a regularization formulation for learning the relationships between tasks in multi-task learning. This formulation ..."
Abstract
-
Cited by 44 (5 self)
- Add to MetaCart
(Show Context)
Multi-task learning is a learning paradigm which seeks to improve the generalization performance of a learning task with the help of some other related tasks. In this paper, we propose a regularization formulation for learning the relationships between tasks in multi-task learning. This formulation can be viewed as a novel generalization of the regularization framework for single-task learning. Besides modeling positive task correlation, our method, called multi-task relationship learning (MTRL), can also describe negative task correlation and identify outlier tasks based on the same underlying principle. Under this regularization framework, the objective function of MTRL is convex. For efficiency, we use an alternating method to learn the optimal model parameters for each task as well as the relationships between tasks. We study MTRL in the symmetric multi-task learning setting and then generalize it to the asymmetric setting as well. We also study the relationships between MTRL and some existing multi-task learning methods. Experiments conducted on a toy problem as well as several benchmark data sets demonstrate the effectiveness of MTRL. 1
Safety in Numbers: Learning Categories from Few Examples with Multi Model Knowledge Transfer
"... Learning object categories from small samples is a challenging problem, where machine learning tools can in general provide very few guarantees. Exploiting prior knowledge may be useful to reproduce the human capability of recognizing objects even from only one single view. This paper presents an SV ..."
Abstract
-
Cited by 41 (9 self)
- Add to MetaCart
(Show Context)
Learning object categories from small samples is a challenging problem, where machine learning tools can in general provide very few guarantees. Exploiting prior knowledge may be useful to reproduce the human capability of recognizing objects even from only one single view. This paper presents an SVM-based model adaptation algorithm able to select and weight appropriately prior knowledge coming from different categories. The method relies on the solution of a convex optimization problem which ensures to have the minimal leave-one-out error on the training set. Experiments on a subset of the Caltech-256 database show that the proposed method produces better results than both choosing one single prior model, and transferring from all previous experience in a flat uninformative way. 1.
Undoing the damage of dataset bias
, 2012
"... The presence of bias in existing object recognition datasets is now well-known in the computer vision community. While it remains in question whether creating an unbiased dataset is possible given limited resources, in this work we propose a discriminative framework that directly exploits dataset b ..."
Abstract
-
Cited by 35 (3 self)
- Add to MetaCart
(Show Context)
The presence of bias in existing object recognition datasets is now well-known in the computer vision community. While it remains in question whether creating an unbiased dataset is possible given limited resources, in this work we propose a discriminative framework that directly exploits dataset bias during training. In particular, our model learns two sets of weights: (1) bias vectors associated with each individual dataset, and (2) visual world weights that are common to all datasets, which are learned by undoing the associated bias from each dataset. The visual world weights are expected to be our best possible approximation to the object model trained on an unbiased dataset, and thus tend to have good generalization ability. We demonstrate the e↵ectiveness of our model by applying the learned weights to a novel, unseen dataset, and report superior results for both classification and detection tasks compared to a classical SVM that does not account for the presence of bias. Overall, we find that it is beneficial to explicitly account for bias when combining multiple datasets.
Relative Density-Ratio Estimation for Robust Distribution Comparison
"... Divergence estimators based on direct approximation of density-ratios without going through separate approximation of numerator and denominator densities have been successfully applied to machine learning tasks that involve distribution comparison such as outlier detection, transfer learning, and tw ..."
Abstract
-
Cited by 27 (18 self)
- Add to MetaCart
(Show Context)
Divergence estimators based on direct approximation of density-ratios without going through separate approximation of numerator and denominator densities have been successfully applied to machine learning tasks that involve distribution comparison such as outlier detection, transfer learning, and two-sample homogeneity test. However, since density-ratio functions often possess high fluctuation, divergence estimation is still a challenging task in practice. In this paper, we propose to use relative divergences for distribution comparison, which involves approximation of relative density-ratios. Since relative density-ratios are always smoother than corresponding ordinary density-ratios, our proposed method is favorable in terms of the non-parametric convergence speed. Furthermore, we show that the proposed divergence estimator has asymptotic variance independent of the model complexity under a parametric setup, implying that the proposed estimator hardly overfits even with complex models. Through experiments, we demonstrate the usefulness of the proposed approach. 1
Domain transfer multiple kernel learning
, 2012
"... Cross-domain learning methods have shown promising results by leveraging labeled patterns from the auxiliary domain to learn a robust classifier for the target domain which has only a limited number of labeled samples. To cope with the considerable change between feature distributions of different d ..."
Abstract
-
Cited by 27 (2 self)
- Add to MetaCart
Cross-domain learning methods have shown promising results by leveraging labeled patterns from the auxiliary domain to learn a robust classifier for the target domain which has only a limited number of labeled samples. To cope with the considerable change between feature distributions of different domains, we propose a new cross-domain kernel learning framework into which many existing kernel methods can be readily incorporated. Our framework, referred to as Domain Transfer Multiple Kernel Learning (DTMKL), simultaneously learns a kernel function and a robust classifier by minimizing both the structural risk functional and the distribution mismatch between the labeled and unlabeled samples from the auxiliary and target domains. Under the DTMKL framework, we also propose two novel methods by using SVM and prelearned classifiers, respectively. Comprehensive experiments on three domain adaptation data sets (i.e., TRECVID, 20 Newsgroups, and email spam data sets) demonstrate that DTMKL-based methods outperform existing cross-domain learning and multiple kernel learning methods.
Street-to-Shop: Cross-Scenario Clothing Retrieval via Parts Alignment and Auxiliary Set
, 2012
"... In this paper, we address a practical problem of cross-scenario clothing retrieval- given a daily human photo cap-tured in general environment, e.g., on street, finding simi-lar clothing in online shops, where the photos are captured more professionally and with clean background. There are large dis ..."
Abstract
-
Cited by 21 (6 self)
- Add to MetaCart
In this paper, we address a practical problem of cross-scenario clothing retrieval- given a daily human photo cap-tured in general environment, e.g., on street, finding simi-lar clothing in online shops, where the photos are captured more professionally and with clean background. There are large discrepancies between daily photo scenario and on-line shopping scenario. We first propose to alleviate the human pose discrepancy by locating 30 human parts detected by a well trained hu-man detector. Then, founded on part features, we propose a two-step calculation to obtain more reliable one-to-many similarities between the query daily photo and online shop-ping photos: 1) the within-scenario one-to-many similari-ties between a query daily photo and the auxiliary set are derived by direct sparse reconstruction; and 2) by a cross-scenario many-to-many similarity transfer matrix inferred offline from an extra auxiliary set and the online shopping set, the reliable cross-scenario one-to-many similarities be-tween the query daily photo and all online shopping photos are obtained. We collect a large online shopping dataset and a daily photo dataset, both of which are thoroughly labeled with 15 clothing attributes via Mechanic Turk. The extensive exper-imental evaluations on the collected datasets well demon-strate the effectiveness of the proposed framework for cross-scenario clothing retrieval.