Results 1 - 10
of
363
What is Twitter, a Social Network or a News Media?
"... Twitter, a microblogging service less than three years old, commands more than 41 million users as of July 2009 and is growing fast. Twitter users tweet about any topic within the 140-character limit and follow others to receive their tweets. The goal of this paper is to study the topological charac ..."
Abstract
-
Cited by 991 (12 self)
- Add to MetaCart
(Show Context)
Twitter, a microblogging service less than three years old, commands more than 41 million users as of July 2009 and is growing fast. Twitter users tweet about any topic within the 140-character limit and follow others to receive their tweets. The goal of this paper is to study the topological characteristics of Twitter and its power as a new medium of information sharing. We have crawled the entire Twitter site and obtained 41.7 million user profiles, 1.47 billion social relations, 4, 262 trending topics, and 106 million tweets. In its follower-following topology analysis we have found a non-power-law follower distribution, a short effective diameter, and low reciprocity, which all mark a deviation from known characteristics of human social networks [28]. In order to identify influentials on Twitter, we have ranked users by the number of followers and by PageRank and found two rankings to be similar.
Differences in the Mechanics of Information Diffusion Across Topics: Idioms, Political Hashtags, and Complex Contagion on Twitter. WWW
, 2011
"... ABSTRACT There is a widespread intuitive sense that different kinds of information spread differently on-line, but it has been difficult to evaluate this question quantitatively since it requires a setting where many different kinds of information spread in a shared environment. Here we study this ..."
Abstract
-
Cited by 171 (4 self)
- Add to MetaCart
(Show Context)
ABSTRACT There is a widespread intuitive sense that different kinds of information spread differently on-line, but it has been difficult to evaluate this question quantitatively since it requires a setting where many different kinds of information spread in a shared environment. Here we study this issue on Twitter, analyzing the ways in which tokens known as hashtags spread on a network defined by the interactions among Twitter users. We find significant variation in the ways that widely-used hashtags on different topics spread. Our results show that this variation is not attributable simply to differences in "stickiness," the probability of adoption based on one or more exposures, but also to a quantity that could be viewed as a kind of "persistence" -the relative extent to which repeated exposures to a hashtag continue to have significant marginal effects. We find that hashtags on politically controversial topics are particularly persistent, with repeated exposures continuing to have unusually large marginal effects on adoption; this provides, to our knowledge, the first large-scale validation of the "complex contagion" principle from sociology, which posits that repeated exposures to an idea are particularly crucial when the idea is in some way controversial or contentious. Among other findings, we discover that hashtags representing the natural analogues of Twitter idioms and neologisms are particularly non-persistent, with the effect of multiple exposures decaying rapidly relative to the first exposure. We also study the subgraph structure of the initial adopters for different widely-adopted hashtags, again finding structural differences across topics. We develop simulation-based and generative models to analyze how the adoption dynamics interact with the network structure of the early adopters on which a hashtag spreads.
Patterns of temporal variation in online media
, 2010
"... Online content exhibits rich temporal dynamics, and diverse realtime user generated content further intensifies this process. However, temporal patterns by which online content grows and fades over time, and by which different pieces of content compete for attention remain largely unexplored. We stu ..."
Abstract
-
Cited by 144 (5 self)
- Add to MetaCart
(Show Context)
Online content exhibits rich temporal dynamics, and diverse realtime user generated content further intensifies this process. However, temporal patterns by which online content grows and fades over time, and by which different pieces of content compete for attention remain largely unexplored. We study temporal patterns associated with online content and how the content’s popularity grows and fades over time. The attention that content receives on the Web varies depending on many factors and occurs on very different time scales and at different resolutions. In order to uncover the temporal dynamics of online content we formulate a time series clustering problem using a similarity metric that is invariant to scaling and shifting. We develop the K-Spectral Centroid (K-SC) clustering algorithm that effectively finds cluster centroids with our similarity measure. By applying an adaptive wavelet-based incremental approach to clustering, we scale K-SC to large data sets. We demonstrate our approach on two massive datasets: a set of 580 million Tweets, and a set of 170 million blog posts and news media articles. We find that K-SC outperforms the K-means clustering algorithm in finding distinct shapes of time series. Our analysis shows that there are six main temporal shapes of attention of online content. We also present a simple model that reliably predicts the shape of attention by using information about only a small number of participants. Our analyses offer insight into common temporal patterns of the content on the Web and broaden the understanding of the dynamics of human attention.
Twittermonitor: Trend detection over the twitter stream
- In Proceedings of the International Conference on Management of Data (SIGMOD’10
"... We present TwitterMonitor, a system that performs trend detection over the Twitter stream. The system identifies emerging topics (i.e. ‘trends’) on Twitter in real time and provides meaningful analytics that synthesize an accurate description of each topic. Users interact with the system by ordering ..."
Abstract
-
Cited by 130 (0 self)
- Add to MetaCart
(Show Context)
We present TwitterMonitor, a system that performs trend detection over the Twitter stream. The system identifies emerging topics (i.e. ‘trends’) on Twitter in real time and provides meaningful analytics that synthesize an accurate description of each topic. Users interact with the system by ordering the identified trends using different criteria and submitting their own description for each trend. We discuss the motivation for trend detection over so-cial media streams and the challenges that lie therein. We then describe our approach to trend detection, as well as the architecture of TwitterMonitor. Finally, we lay out our demonstration scenario.
Inferring Networks of Diffusion and Influence
, 2010
"... Information diffusion and virus propagation are fundamental processes talking place in networks. While it is often possible to directly observe when nodes become infected, observing individual transmissions (i.e., who infects whom or who influences whom) is typically very difficult. Furthermore, in ..."
Abstract
-
Cited by 116 (13 self)
- Add to MetaCart
Information diffusion and virus propagation are fundamental processes talking place in networks. While it is often possible to directly observe when nodes become infected, observing individual transmissions (i.e., who infects whom or who influences whom) is typically very difficult. Furthermore, in many applications, the underlying network over which the diffusions and propagations spread is actually unobserved. We tackle these challenges by developing a method for tracing paths of diffusion and influence through networks and inferring the networks over which contagions propagate. Given the times when nodes adopt pieces of information or become infected, we identify the optimal network that best explains the observed infection times. Since the optimization problem is NP-hard to solve exactly, we develop an efficient approximation algorithm that scales to large datasets and in practice gives provably near-optimal performance. We demonstrate the effectiveness of our approach by tracing information cascades in a set of 170 million blogs and news articles over a one year period to infer how information flows through the online media space. We find that the diffusion network of news tends to have a core-periphery structure with a small set of core media sites that diffuse information to the rest of the Web. These sites tend to have stable circles of influence with more general news media sites acting as connectors between them.
TwitInfo: Aggregating and Visualizing Microblogs for Event Exploration
"... Microblogs are a tremendous repository of user-generated content about world events. However, for people trying to understand events by querying services like Twitter, a chronological log of posts makes it very difficult to get a detailed understanding of an event. In this paper, we present TwitInfo ..."
Abstract
-
Cited by 96 (5 self)
- Add to MetaCart
(Show Context)
Microblogs are a tremendous repository of user-generated content about world events. However, for people trying to understand events by querying services like Twitter, a chronological log of posts makes it very difficult to get a detailed understanding of an event. In this paper, we present TwitInfo, a system for visualizing and summarizing events on Twitter. TwitInfo allows users to browse a large collection of tweets using a timeline-based display that highlights peaks of high tweet activity. A novel streaming algorithm automatically discovers these peaks and labels them meaningfully using text from the tweets. Users can drill down to subevents, and explore further via geolocation, sentiment, and popular URLs. We contribute a recall-normalized aggregate sentiment visualization to produce more honest sentiment overviews. An evaluation of the system revealed that users were able to reconstruct meaningful summaries of events in a small amount of time. An interview with a Pulitzer Prize-winning journalist suggested that the system would be especially useful for understanding a long-running event and for identifying eyewitnesses. Quantitatively, our system can identify 80-100 % of manually labeled peaks, facilitating a relatively complete view of each event studied.
Modeling Information Diffusion in Implicit Networks
"... Abstract—Social media forms a central domain for the production and dissemination of real-time information. Even though such flows of information have traditionally been thought of as diffusion processes over social networks, the underlying phenomena are the result of a complex web of interactions a ..."
Abstract
-
Cited by 83 (2 self)
- Add to MetaCart
(Show Context)
Abstract—Social media forms a central domain for the production and dissemination of real-time information. Even though such flows of information have traditionally been thought of as diffusion processes over social networks, the underlying phenomena are the result of a complex web of interactions among numerous participants. Here we develop a Linear Influence Model where rather than requiring the knowledge of the social network and then modeling the diffusion by predicting which node will influence which other nodes in the network, we focus on modeling the global influence of a node on the rate of diffusion through the (implicit) network. We model the number of newly infected nodes as a function of which other nodes got infected in the past. For each node we estimate an influence function that quantifies how many subsequent infections can be attributed to the influence of that node over time. A nonparametric formulation of the model leads to a simple least squares problem that can be solved on large datasets. We validate our model on a set of 500 million tweets and a set of 170 million news articles and blog posts. We show that the Linear Influence Model accurately models influences of nodes and reliably predicts the temporal dynamics of information diffusion. We find that patterns of influence of individual participants differ significantly depending on the type of the node and the topic of the information. I.
Comparing Twitter and traditional media using topic models
- In: Proceedings of 33rd European conference on IR research: Advances in information retrieval 2011
"... Abstract. Twitter as a new form of social media can potentially con-tain much useful information, but content analysis on Twitter has not been well studied. In particular, it is not clear whether as an information source Twitter can be simply regarded as a faster news feed that covers mostly the sam ..."
Abstract
-
Cited by 62 (2 self)
- Add to MetaCart
(Show Context)
Abstract. Twitter as a new form of social media can potentially con-tain much useful information, but content analysis on Twitter has not been well studied. In particular, it is not clear whether as an information source Twitter can be simply regarded as a faster news feed that covers mostly the same information as traditional news media. In This paper we empirically compare the content of Twitter with a traditional news medium, New York Times, using unsupervised topic modeling. We use a Twitter-LDA model to discover topics from a representative sample of the entire Twitter. We then use text mining techniques to compare these Twitter topics with topics from New York Times, taking into considera-tion topic categories and types. We also study the relation between the proportions of opinionated tweets and retweets and topic categories and types. Our comparisons show interesting and useful findings for down-stream IR or DM applications.
Eddi: Interactive Topic-based Browsing of Social Status Streams
"... Twitter streams are on overload: active users receive hundreds of items per day, and existing interfaces force us to march through a chronologically-ordered morass to find tweets of interest. We present an approach to organizing a user's own feed into coherently clustered trending topics for mo ..."
Abstract
-
Cited by 58 (8 self)
- Add to MetaCart
(Show Context)
Twitter streams are on overload: active users receive hundreds of items per day, and existing interfaces force us to march through a chronologically-ordered morass to find tweets of interest. We present an approach to organizing a user's own feed into coherently clustered trending topics for more directed exploration. Our Twitter client, called Eddi, groups tweets in a user’s feed into topics mentioned explicitly or implicitly, which users can then browse for items of interest. To implement this topic clustering, we have developed a novel algorithm for discovering topics in short status updates powered by linguistic syntactic transformation and callouts to a search engine. An algorithm evaluation reveals that search engine callouts outperform other approaches when they employ simple syntactic transformation and backoff strategies. Active Twitter users evaluated Eddi and found it to be a more efficient and enjoyable way to browse an overwhelming status update feed than the standard chronological interface. ACM Classification: H5.2. Information interfaces and presentation (e.g., HCI): User interfaces.
On the Convexity of Latent Social Network Inference
"... In many real-world scenarios, it is nearly impossible to collect explicit social network data. In such cases, whole networks must be inferred from underlying observations. Here, we formulate the problem of inferring latent social networks based on network diffusion or disease propagation data. We co ..."
Abstract
-
Cited by 55 (4 self)
- Add to MetaCart
(Show Context)
In many real-world scenarios, it is nearly impossible to collect explicit social network data. In such cases, whole networks must be inferred from underlying observations. Here, we formulate the problem of inferring latent social networks based on network diffusion or disease propagation data. We consider contagions propagating over the edges of an unobserved social network, where we only observe the times when nodes became infected, but not who infected them. Given such node infection times, we then identify the optimal network that best explains the observed data. We present a maximum likelihood approach based on convex programming with a l1-like penalty term that encourages sparsity. Experiments on real and synthetic data reveal that our method near-perfectly recovers the underlying network structure as well as the parameters of the contagion propagation model. Moreover, our approach scales well as it can infer optimal networks on thousand nodes in a matter of minutes. 1