Results 1  10
of
154
Compressive Sensing and Structured Random Matrices
 RADON SERIES COMP. APPL. MATH XX, 1–95 © DE GRUYTER 20YY
"... These notes give a mathematical introduction to compressive sensing focusing on recovery using ℓ1minimization and structured random matrices. An emphasis is put on techniques for proving probabilistic estimates for condition numbers of structured random matrices. Estimates of this type are key to ..."
Abstract

Cited by 162 (19 self)
 Add to MetaCart
These notes give a mathematical introduction to compressive sensing focusing on recovery using ℓ1minimization and structured random matrices. An emphasis is put on techniques for proving probabilistic estimates for condition numbers of structured random matrices. Estimates of this type are key to providing conditions that ensure exact or approximate recovery of sparse vectors using ℓ1minimization.
From theory to practice: SubNyquist sampling of sparse wideband analog signals
 IEEE J. SEL. TOPICS SIGNAL PROCESS
, 2010
"... Conventional subNyquist sampling methods for analog signals exploit prior information about the spectral support. In this paper, we consider the challenging problem of blind subNyquist sampling of multiband signals, whose unknown frequency support occupies only a small portion of a wide spectrum. ..."
Abstract

Cited by 149 (54 self)
 Add to MetaCart
Conventional subNyquist sampling methods for analog signals exploit prior information about the spectral support. In this paper, we consider the challenging problem of blind subNyquist sampling of multiband signals, whose unknown frequency support occupies only a small portion of a wide spectrum. Our primary design goals are efficient hardware implementation and low computational load on the supporting digital processing. We propose a system, named the modulated wideband converter, which first multiplies the analog signal by a bank of periodic waveforms. The product is then lowpass filtered and sampled uniformly at a low rate, which is orders of magnitude smaller than Nyquist. Perfect recovery from the proposed samples is achieved under certain necessary and sufficient conditions. We also develop a digital architecture, which allows either reconstruction of the analog input, or processing of any band of interest at a low rate, that is, without interpolating to the high Nyquist rate. Numerical simulations demonstrate many engineering aspects: robustness to noise and mismodeling, potential hardware simplifications, realtime performance for signals with timevarying support and stability to quantization effects. We compare our system with two previous approaches: periodic nonuniform sampling, which is bandwidth limited by existing hardware devices, and the random demodulator, which is restricted to discrete multitone signals and has a high computational load. In the broader context of Nyquist sampling, our scheme has the potential to break through the bandwidth barrier of stateoftheart analog conversion technologies such as interleaved converters.
Sensing by Random Convolution
 IEEE Int. Work. on Comp. Adv. MultiSensor Adaptive Proc., CAMPSAP
, 2007
"... Abstract. This paper outlines a new framework for compressive sensing: convolution with a random waveform followed by random time domain subsampling. We show that sensing by random convolution is a universally efficient data acquisition strategy in that an ndimensional signal which is S sparse in a ..."
Abstract

Cited by 114 (8 self)
 Add to MetaCart
(Show Context)
Abstract. This paper outlines a new framework for compressive sensing: convolution with a random waveform followed by random time domain subsampling. We show that sensing by random convolution is a universally efficient data acquisition strategy in that an ndimensional signal which is S sparse in any fixed representation can be recovered from m � S log n measurements. We discuss two imaging scenarios — radar and Fourier optics — where convolution with a random pulse allows us to seemingly superresolve finescale features, allowing us to recover highresolution signals from lowresolution measurements. 1. Introduction. The new field of compressive sensing (CS) has given us a fresh look at data acquisition, one of the fundamental tasks in signal processing. The message of this theory can be summarized succinctly [7, 8, 10, 15, 32]: the number of measurements we need to reconstruct a signal depends on its sparsity rather than its bandwidth. These measurements, however, are different than the samples that
Signal Processing with Compressive Measurements
, 2009
"... The recently introduced theory of compressive sensing enables the recovery of sparse or compressible signals from a small set of nonadaptive, linear measurements. If properly chosen, the number of measurements can be much smaller than the number of Nyquistrate samples. Interestingly, it has been sh ..."
Abstract

Cited by 100 (25 self)
 Add to MetaCart
(Show Context)
The recently introduced theory of compressive sensing enables the recovery of sparse or compressible signals from a small set of nonadaptive, linear measurements. If properly chosen, the number of measurements can be much smaller than the number of Nyquistrate samples. Interestingly, it has been shown that random projections are a nearoptimal measurement scheme. This has inspired the design of hardware systems that directly implement random measurement protocols. However, despite the intense focus of the community on signal recovery, many (if not most) signal processing problems do not require full signal recovery. In this paper, we take some first steps in the direction of solving inference problems—such as detection, classification, or estimation—and filtering problems using only compressive measurements and without ever reconstructing the signals involved. We provide theoretical bounds along with experimental results.
Structured compressed sensing: From theory to applications
 IEEE TRANS. SIGNAL PROCESS
, 2011
"... Compressed sensing (CS) is an emerging field that has attracted considerable research interest over the past few years. Previous review articles in CS limit their scope to standard discretetodiscrete measurement architectures using matrices of randomized nature and signal models based on standard ..."
Abstract

Cited by 98 (15 self)
 Add to MetaCart
(Show Context)
Compressed sensing (CS) is an emerging field that has attracted considerable research interest over the past few years. Previous review articles in CS limit their scope to standard discretetodiscrete measurement architectures using matrices of randomized nature and signal models based on standard sparsity. In recent years, CS has worked its way into several new application areas. This, in turn, necessitates a fresh look on many of the basics of CS. The random matrix measurement operator must be replaced by more structured sensing architectures that correspond to the characteristics of feasible acquisition hardware. The standard sparsity prior has to be extended to include a much richer class of signals and to encode broader data models, including continuoustime signals. In our overview, the theme is exploiting signal and measurement structure in compressive sensing. The prime focus is bridging theory and practice; that is, to pinpoint the potential of structured CS strategies to emerge from the math to the hardware. Our summary highlights new directions as well as relations to more traditional CS, with the hope of serving both as a review to practitioners wanting to join this emerging field, and as a reference for researchers that attempts to put some of the existing ideas in perspective of practical applications.
Robust 1Bit Compressive Sensing via Binary Stable Embeddings of Sparse Vectors
, 2011
"... The Compressive Sensing (CS) framework aims to ease the burden on analogtodigital converters (ADCs) by reducing the sampling rate required to acquire and stably recover sparse signals. Practical ADCs not only sample but also quantize each measurement to a finite number of bits; moreover, there is ..."
Abstract

Cited by 85 (28 self)
 Add to MetaCart
The Compressive Sensing (CS) framework aims to ease the burden on analogtodigital converters (ADCs) by reducing the sampling rate required to acquire and stably recover sparse signals. Practical ADCs not only sample but also quantize each measurement to a finite number of bits; moreover, there is an inverse relationship between the achievable sampling rate and the bit depth. In this paper, we investigate an alternative CS approach that shifts the emphasis from the sampling rate to the number of bits per measurement. In particular, we explore the extreme case of 1bit CS measurements, which capture just their sign. Our results come in two flavors. First, we consider ideal reconstruction from noiseless 1bit measurements and provide a lower bound on the best achievable reconstruction error. We also demonstrate that a large class of measurement mappings achieve this optimal bound. Second, we consider reconstruction robustness to measurement errors and noise and introduce the Binary ɛStable Embedding (BɛSE) property, which characterizes the robustness measurement process to sign changes. We show the same class of matrices that provide optimal noiseless performance also enable such a robust mapping. On the practical side, we introduce the Binary Iterative Hard Thresholding (BIHT) algorithm for signal reconstruction from 1bit measurements that offers stateoftheart performance.
1 Sparse Recovery Using Sparse Matrices
"... Abstract—We survey algorithms for sparse recovery problems that are based on sparse random matrices. Such matrices has several attractive properties: they support algorithms with low computational complexity, and make it easy to perform incremental updates to signals. We discuss applications to seve ..."
Abstract

Cited by 72 (13 self)
 Add to MetaCart
Abstract—We survey algorithms for sparse recovery problems that are based on sparse random matrices. Such matrices has several attractive properties: they support algorithms with low computational complexity, and make it easy to perform incremental updates to signals. We discuss applications to several areas, including compressive sensing, data stream computing and group testing. I.
Democracy in Action: Quantization, Saturation, and Compressive Sensing
"... Recent theoretical developments in the area of compressive sensing (CS) have the potential to significantly extend the capabilities of digital data acquisition systems such as analogtodigital converters and digital imagers in certain applications. A key hallmark of CS is that it enables subNyquis ..."
Abstract

Cited by 59 (22 self)
 Add to MetaCart
Recent theoretical developments in the area of compressive sensing (CS) have the potential to significantly extend the capabilities of digital data acquisition systems such as analogtodigital converters and digital imagers in certain applications. A key hallmark of CS is that it enables subNyquist sampling for signals, images, and other data. In this paper, we explore and exploit another heretofore relatively unexplored hallmark, the fact that certain CS measurement systems are democractic, which means that each measurement carries roughly the same amount of information about the signal being acquired. Using the democracy property, we rethink how to quantize the compressive measurements in practical CS systems. If we were to apply the conventional wisdom gained from conventional ShannonNyquist uniform sampling, then we would scale down the analog signal amplitude (and therefore increase the quantization error) to avoid the gross saturation errors that occur when the signal amplitude exceeds the quantizer’s dynamic range. In stark contrast, we demonstrate that a CS system achieves the best performance when it operates at a significantly nonzero saturation rate. We develop two methods to recover signals from saturated CS measurements. The first directly exploits the democracy property by simply discarding the saturated measurements. The second integrates saturated measurements as constraints into standard linear programming and greedy recovery techniques. Finally, we develop a simple automatic gain control system that uses the saturation rate to optimize the input gain.
Compressive Sensing
, 2010
"... Compressive sensing is a new type of sampling theory, which predicts that sparse signals and images can be reconstructed from what was previously believed to be incomplete information. As a main feature, efficient algorithms such as ℓ1minimization can be used for recovery. The theory has many poten ..."
Abstract

Cited by 50 (13 self)
 Add to MetaCart
Compressive sensing is a new type of sampling theory, which predicts that sparse signals and images can be reconstructed from what was previously believed to be incomplete information. As a main feature, efficient algorithms such as ℓ1minimization can be used for recovery. The theory has many potential applications in signal processing and imaging. This chapter gives an introduction and overview on both theoretical and numerical aspects of compressive sensing.
Restricted isometries for partial random circulant matrices
 Appl. Comput. Harmon. Anal
"... In the theory of compressed sensing, restricted isometry analysis has become a standard tool for studying how efficiently a measurement matrix acquires information about sparse and compressible signals. Many recovery algorithms are known to succeed when the restricted isometry constants of the sampl ..."
Abstract

Cited by 48 (9 self)
 Add to MetaCart
(Show Context)
In the theory of compressed sensing, restricted isometry analysis has become a standard tool for studying how efficiently a measurement matrix acquires information about sparse and compressible signals. Many recovery algorithms are known to succeed when the restricted isometry constants of the sampling matrix are small. Many potential applications of compressed sensing involve a dataacquisition process that proceeds by convolution with a random pulse followed by (nonrandom) subsampling. At present, the theoretical analysis of this measurement technique is lacking. This paper demonstrates that the sth order restricted isometry constant is small when the number m of samples satisfies m � (s log n) 3/2, where n is the length of the pulse. This bound improves on previous estimates, which exhibit quadratic scaling. 1