Results 1 
3 of
3
A calculus of mobile processes, I
, 1992
"... We present the acalculus, a calculus of communicating systems in which one can naturally express processes which have changing structure. Not only may the component agents of a system be arbitrarily linked, but a communication between neighbours may carry information which changes that linkage. The ..."
Abstract

Cited by 1184 (31 self)
 Add to MetaCart
We present the acalculus, a calculus of communicating systems in which one can naturally express processes which have changing structure. Not only may the component agents of a system be arbitrarily linked, but a communication between neighbours may carry information which changes that linkage. The calculus is an extension of the process algebra CCS, following work by Engberg and Nielsen, who added mobility to CCS while preserving its algebraic properties. The rrcalculus gains simplicity by removing all distinction between variables and constants; communication links are identified by names, and computation is represented purely as the communication of names across links. After an illustrated description of how the ncalculus generalises conventional process algebras in treating mobility, several examples exploiting mobility are given in some detail. The important examples are the encoding into the ncalculus of higherorder functions (the Icalculus and combinatory algebra), the transmission of processes as values, and the representation of data structures as processes. The paper continues by presenting the algebraic theory of strong bisimilarity and strong equivalence, including a new notion of equivalence indexed by distinctionsi.e., assumptions of inequality among names. These theories are based upon a semantics in terms of a labeled transition system and a notion of strong bisimulation, both of which are expounded in detail in a companion paper. We also report briefly on workinprogress based upon the corresponding notion of weak bisimulation, in which internal actions cannot be observed.
Nondeterministic Lazy it λcalculus VS it πcalculus
 ECOLE NORMALE SUPERIEURE
, 1993
"... We pursue the study of the embedding of the λcalculus into the πcalculus. Various λ calculi with parallel and convergence testing facilities are examined and their expressiveness compared; λj a lazy calculus augmented with a nondeterministic choice operator and a convergence testing combinator, ..."
Abstract
 Add to MetaCart
We pursue the study of the embedding of the λcalculus into the πcalculus. Various λ calculi with parallel and convergence testing facilities are examined and their expressiveness compared; λj a lazy calculus augmented with a nondeterministic choice operator and a convergence testing combinator, emerges as a suitable language to be encoded in π. Through the use of closures for variables and abstractions, the process of substitution in λj is managed in a semiexplicit way. The semantics associated to both λj and are based on contextual testing preorders. We define an encoding of λj into π; we prove that it is adequate with respect to those semantics. However, the encoding is not fullyadequate; standard examples show that π is still more discriminating than λj .