Results 1  10
of
50
Hyperspectral unmixing overview: Geometrical, statistical, and sparse regressionbased approaches
 IEEE J. SEL. TOPICS APPL. EARTH OBSERV. REMOTE SENS
, 2012
"... Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher sp ..."
Abstract

Cited by 103 (34 self)
 Add to MetaCart
(Show Context)
Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher spectral resolution enables material identification via spectroscopic analysis, which facilitates countless applications that require identifying materials in scenarios unsuitable for classical spectroscopic analysis. Due to low spatial resolution of HSCs, microscopic material mixing, and multiple scattering, spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus, accurate estimation requires unmixing. Pixels are assumed to be mixtures of a few materials, called endmembers. Unmixing involves estimating all or some of: the number of endmembers, their spectral signatures, and their abundances at each pixel. Unmixing is a challenging, illposed
Joint Bayesian Endmember Extraction and Linear Unmixing for Hyperspectral Imagery
"... Abstract—This paper studies a fully Bayesian algorithm for endmember extraction and abundance estimation for hyperspectral imagery. Each pixel of the hyperspectral image is decomposed as a linear combination of pure endmember spectra following the linear mixing model. The estimation of the unknown e ..."
Abstract

Cited by 67 (29 self)
 Add to MetaCart
(Show Context)
Abstract—This paper studies a fully Bayesian algorithm for endmember extraction and abundance estimation for hyperspectral imagery. Each pixel of the hyperspectral image is decomposed as a linear combination of pure endmember spectra following the linear mixing model. The estimation of the unknown endmember spectra is conducted in a unified manner by generating the posterior distribution of abundances and endmember parameters under a hierarchical Bayesian model. This model assumes conjugate prior distributions for these parameters, accounts for nonnegativity and fulladditivity constraints, and exploits the fact that the endmember proportions lie on a lower dimensional simplex. A Gibbs sampler is proposed to overcome the complexity of evaluating the resulting posterior distribution. This sampler generates samples distributed according to the posterior distribution and estimates the unknown parameters using these generated samples. The accuracy of the joint Bayesian estimator is illustrated by simulations conducted on synthetic and real AVIRIS images. Index Terms—Bayesian inference, endmember extraction, hyperspectral imagery, linear spectral unmixing, MCMC methods. I.
MINIMUM VOLUME SIMPLEX ANALYSIS: A FAST ALGORITHM TO UNMIX HYPERSPECTRAL DATA
"... This paper presents a new method of minimum volume class for hyperspectral unmixing, termed minimum volume simplex analysis (MVSA). The underlying mixing model is linear; i.e., the mixed hyperspectral vectors are modeled by a linear mixture of the endmember signatures weighted by the correspondent a ..."
Abstract

Cited by 55 (11 self)
 Add to MetaCart
(Show Context)
This paper presents a new method of minimum volume class for hyperspectral unmixing, termed minimum volume simplex analysis (MVSA). The underlying mixing model is linear; i.e., the mixed hyperspectral vectors are modeled by a linear mixture of the endmember signatures weighted by the correspondent abundance fractions. MVSA approaches hyperspectral unmixing by fitting a minimum volume simplex to the hyperspectral data, constraining the abundance fractions to belong to the probability simplex. The resulting optimization problem is solved by implementing a sequence of quadratically constrained subproblems. In a final step, the hard constraint on the abundance fractions is replaced with a hinge type loss function to account for outliers and noise. We illustrate the stateoftheart performance of the MVSA algorithm in unmixing simulated data sets. We are mainly concerning with the realistic scenario in which the pure pixel assumption (i.e., there exists at least one pure pixel per endmember) is not fulfilled. In these conditions, the MVSA yields much better performance than the pure pixel based algorithms. Index Terms — Hyperspectral unmixing, Minimum volume simplex, Source separation.
A variable splitting augmented Lagrangian approach to linear spectral unmixing
 In First IEEE Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing
, 2009
"... This paper presents a new linear hyperspectral unmixing method of the minimum volume class, termed simplex identification via split augmented Lagrangian (SISAL). Following Craig’s seminal ideas, hyperspectral linear unmixing amounts to finding the minimum volume simplex containing the hyperspectral ..."
Abstract

Cited by 41 (8 self)
 Add to MetaCart
(Show Context)
This paper presents a new linear hyperspectral unmixing method of the minimum volume class, termed simplex identification via split augmented Lagrangian (SISAL). Following Craig’s seminal ideas, hyperspectral linear unmixing amounts to finding the minimum volume simplex containing the hyperspectral vectors. This is a nonconvex optimization problem with convex constraints. In the proposed approach, the positivity constraints, forcing the spectral vectors to belong to the convex hull of the endmember signatures, are replaced by soft constraints. The obtained problem is solved by a sequence of augmented Lagrangian optimizations. The resulting algorithm is very fast and able so solve problems far beyond the reach of the current stateofthe art algorithms. The effectiveness of SISAL is illustrated with simulated data. Index Terms — Hyperspectral unmixing, Minimum volume simplex, Variable Splitting augmented Lagrangian, nonsmooth optimization.
Nonlinear unmixing of hyperspectral images using a generalized bilinear model
 IEEE Trans. Geosci. and Remote Sensing
"... Nonlinear models have recently shown interesting properties for spectral unmixing. This paper considers a generalized bilinear model recently introduced for unmixing hyperspectral images. Different algorithms are studied to estimate the parameters of this bilinear model. The positivity and sumtoon ..."
Abstract

Cited by 41 (21 self)
 Add to MetaCart
(Show Context)
Nonlinear models have recently shown interesting properties for spectral unmixing. This paper considers a generalized bilinear model recently introduced for unmixing hyperspectral images. Different algorithms are studied to estimate the parameters of this bilinear model. The positivity and sumtoone constraints for the abundances are ensured by the proposed algorithms. The performance of the resulting unmixing strategy is evaluated via simulations conducted on synthetic and real data. Index Terms — hyperspectral imagery, spectral unmixing, bilinear model, Bayesian inference, MCMC methods, gradient descent algorithm, least square algorithm. 1.
ALTERNATING DIRECTION ALGORITHMS FOR CONSTRAINED SPARSE REGRESSION: APPLICATION TO HYPERSPECTRAL UNMIXING
"... Convex optimization problems are common in hyperspectral unmixing. Examples are the constrained least squares (CLS) problem used to compute the fractional abundances in a linear mixture of known spectra, the constrained basis pursuit (CBP) to find sparse (i.e., with a small number of terms) linear m ..."
Abstract

Cited by 33 (11 self)
 Add to MetaCart
(Show Context)
Convex optimization problems are common in hyperspectral unmixing. Examples are the constrained least squares (CLS) problem used to compute the fractional abundances in a linear mixture of known spectra, the constrained basis pursuit (CBP) to find sparse (i.e., with a small number of terms) linear mixtures of spectra, selected from large libraries, and the constrained basis pursuit denoising (CBPDN), which is a generalization of BP to admit modeling errors. In this paper, we introduce two new algorithms to efficiently solve these optimization problems, based on the alternating direction method of multipliers, a method from the augmented Lagrangian family. The algorithms are termed SUnSAL (sparse unmixing by variable splitting and augmented Lagrangian) and CSUnSAL (constrained SUnSAL). CSUnSAL solves the CBP and CBPDN problems, while SUnSAL solves CLS as well as a more general version thereof, called constrained sparse regression (CSR). CSUnSAL and SUnSAL are shown to outperform offtheshelf methods in terms of speed and accuracy. 1.
Hierarchical Bayesian Sparse Image Reconstruction With Application to MRFM
"... Abstract—This paper presents a hierarchical Bayesian model to reconstruct sparse images when the observations are obtained from linear transformations and corrupted by an additive white Gaussian noise. Our hierarchical Bayes model is well suited to such naturally sparse image applications as it seam ..."
Abstract

Cited by 30 (12 self)
 Add to MetaCart
(Show Context)
Abstract—This paper presents a hierarchical Bayesian model to reconstruct sparse images when the observations are obtained from linear transformations and corrupted by an additive white Gaussian noise. Our hierarchical Bayes model is well suited to such naturally sparse image applications as it seamlessly accounts for properties such as sparsity and positivity of the image via appropriate Bayes priors. We propose a prior that is based on a weighted mixture of a positive exponential distribution and a mass at zero. The prior has hyperparameters that are tuned automatically by marginalization over the hierarchical Bayesian model. To overcome the complexity of the posterior distribution, a Gibbs sampling strategy is proposed. The Gibbs samples can be used to estimate the image to be recovered, e.g., by maximizing the estimated posterior distribution. In our fully Bayesian approach, the posteriors of all the parameters are available. Thus, our algorithm provides more information than other previously proposed sparse reconstruction methods that only give a point estimate. The performance of the proposed hierarchical Bayesian sparse reconstruction method is illustrated on synthetic data and real data collected from a tobacco virus sample using a prototype MRFM instrument. Index Terms—Bayesian inference, deconvolution, Markov chain Monte Carlo (MCMC) methods, magnetic resonance force microscopy
Supervised nonlinear spectral unmixing using a postnonlinear mixing model for hyperspectral imagery
, 2012
"... This paper presents a nonlinear mixing model for hyperspectral image unmixing. The proposed model assumes that the pixel reflectances are nonlinear functions of pure spectral components contaminated by an additive white Gaussian noise. These nonlinear functions are approximated using polynomial func ..."
Abstract

Cited by 24 (13 self)
 Add to MetaCart
This paper presents a nonlinear mixing model for hyperspectral image unmixing. The proposed model assumes that the pixel reflectances are nonlinear functions of pure spectral components contaminated by an additive white Gaussian noise. These nonlinear functions are approximated using polynomial functions leading to a polynomial postnonlinear mixing model. A Bayesian algorithm and optimization methods are proposed to estimate the parameters involved in the model.The performance of the unmixing strategies is evaluated by simulations conducted on synthetic and real data.
Bayesian orthogonal component analysis for sparse representation. Extension to nonhomogeneous sparsity level over times,” Univ
 Rep., Nov. 2009 [Online]. Available: http://dobigeon.perso.enseeiht.fr/publis.html
"... Abstract—This paper addresses the problem of identifying a lower dimensional space where observed data can be sparsely represented. This undercomplete dictionary learning task can be formulated as a blind separation problem of sparse sources linearly mixed with an unknown orthogonal mixing matrix. T ..."
Abstract

Cited by 22 (10 self)
 Add to MetaCart
(Show Context)
Abstract—This paper addresses the problem of identifying a lower dimensional space where observed data can be sparsely represented. This undercomplete dictionary learning task can be formulated as a blind separation problem of sparse sources linearly mixed with an unknown orthogonal mixing matrix. This issue is formulated in a Bayesian framework. First, the unknown sparse sources are modeled as Bernoulli–Gaussian processes. To promote sparsity, a weighted mixture of an atom at zero and a Gaussian distribution is proposed as prior distribution for the unobserved sources. A noninformative prior distribution defined on an appropriate Stiefel manifold is elected for the mixing matrix. The Bayesian inference on the unknown parameters is conducted using a Markov chain Monte Carlo (MCMC) method. A partially collapsed Gibbs sampler is designed to generate samples asymptotically distributed according to the joint posterior distribution of the unknown model parameters and hyperparameters. These samples are then used to approximate the joint maximum a posteriori estimator of the sources and mixing matrix. Simulations conducted on synthetic data are reported to illustrate the performance of the method for recovering sparse representations. An application to sparse coding on undercomplete dictionary is finally investigated. Index Terms—Bayesian inference, dictionary learning, Markov chain Monte Carlo (MCMC) methods, sparse representation.
Hyperspectral unmixing based on mixtures of Dirichlet components
 IEEE Transactions on Geoscience and Remote Sensing
"... Abstract—This paper introduces a new unsupervised hyperspectral unmixing method conceived to linear but highly mixed hyperspectral data sets, in which the simplex of minimum volume, usually estimated by the purely geometrically based algorithms, is far way from the true simplex associated with the e ..."
Abstract

Cited by 19 (5 self)
 Add to MetaCart
(Show Context)
Abstract—This paper introduces a new unsupervised hyperspectral unmixing method conceived to linear but highly mixed hyperspectral data sets, in which the simplex of minimum volume, usually estimated by the purely geometrically based algorithms, is far way from the true simplex associated with the endmembers. The proposed method, an extension of our previous studies, resorts to the statistical framework. The abundance fraction prior is a mixture of Dirichlet densities, thus automatically enforcing the constraints on the abundance fractions imposed by the acquisition process, namely, nonnegativity and sumtoone. A cyclic minimization algorithm is developed where the following are observed: 1) The number of Dirichlet modes is inferred based on the minimum description length principle; 2) a generalized expectation maximization algorithm is derived to infer the model parameters; and 3) a sequence of augmented Lagrangianbased optimizations is used to compute the signatures of the endmembers. Experiments on simulated and real data are presented to show the effectiveness of the proposed algorithm in unmixing problems beyond the reach of the geometrically based stateoftheart competitors. Index Terms—Augmented Lagrangian method of multipliers, blind hyperspectral unmixing, dependent components, generalized expectation maximization (GEM), minimum description length (MDL), mixtures of Dirichlet densities. I.