Results 1  10
of
56
DifferentialAlgebraic Dynamic Logic for DifferentialAlgebraic Programs
"... Abstract. We generalise dynamic logic to a logic for differentialalgebraic programs, i.e., discrete programs augmented with firstorder differentialalgebraic formulas as continuous evolution constraints in addition to firstorder discrete jump formulas. These programs characterise interacting discr ..."
Abstract

Cited by 41 (27 self)
 Add to MetaCart
(Show Context)
Abstract. We generalise dynamic logic to a logic for differentialalgebraic programs, i.e., discrete programs augmented with firstorder differentialalgebraic formulas as continuous evolution constraints in addition to firstorder discrete jump formulas. These programs characterise interacting discrete and continuous dynamics of hybrid systems elegantly and uniformly. For our logic, we introduce a calculus over real arithmetic with discrete induction and a new differential induction with which differentialalgebraic programs can be verified by exploiting their differential constraints algebraically without having to solve them. We develop the theory of differential induction and differential refinement and analyse their deductive power. As a case study, we present parametric tangential roundabout maneuvers in air traffic control and prove collision avoidance in our calculus.
Formal verification of hybrid systems
, 2011
"... In formal verification, a designer first constructs a model, with mathematically precise semantics, of the system under design, and performs extensive analysis with respect to correctness requirements. The appropriate mathematical model for embedded control systems is hybrid systems that combines th ..."
Abstract

Cited by 32 (0 self)
 Add to MetaCart
(Show Context)
In formal verification, a designer first constructs a model, with mathematically precise semantics, of the system under design, and performs extensive analysis with respect to correctness requirements. The appropriate mathematical model for embedded control systems is hybrid systems that combines the traditional statemachine based models for discrete control with classical differentialequations based models for continuously evolving physical activities. In this article, we briefly review selected existing approaches to formal verification of hybrid systems, along with directions for future research.
Formal Verification of Curved Flight Collision Avoidance Maneuvers: A Case Study
, 2009
"... under contracts no. 2008TJ1860, and by the Air Force (University of Vanderbilt) under contract no. 18727S3. The views and conclusions contained in this document are those of the author and should not be interpreted as representing the official policies, either expressed or implied, of any sponsoring ..."
Abstract

Cited by 29 (13 self)
 Add to MetaCart
(Show Context)
under contracts no. 2008TJ1860, and by the Air Force (University of Vanderbilt) under contract no. 18727S3. The views and conclusions contained in this document are those of the author and should not be interpreted as representing the official policies, either expressed or implied, of any sponsoring institution or government. Keywords: formal verification of hybrid systems, deduction, air traffic control, logic for hybrid Aircraft collision avoidance maneuvers are important and complex applications. Curved flight exhibits nontrivial continuous behavior. In combination with the control choices during air traffic maneuvers, this yields hybrid systems with challenging interactions of discrete and continuous dynamics. As a case study illustrating the use of a new proof assistant for a logic for nonlinear hybrid systems, we analyze collision freedom of roundabout maneuvers in air traffic control, where appropriate curved flight, good timing, and compatible maneuvering are crucial for guaranteeing safe spatial separation of aircraft throughout their flight. We show that formal verification of hybrid systems can scale to curved flight maneuvers required in aircraft control applications. We introduce a fully flyable variant of the roundabout collision avoidance maneuver and verify safety properties
European Train Control System: A Case Study in Formal Verification
, 2009
"... Complex physical systems have several degrees of freedom. They only work correctly when their control parameters obey corresponding constraints. Based on the informal specification of the European Train Control System (ETCS), we design a controller for its cooperation protocol. For its free paramet ..."
Abstract

Cited by 22 (10 self)
 Add to MetaCart
(Show Context)
Complex physical systems have several degrees of freedom. They only work correctly when their control parameters obey corresponding constraints. Based on the informal specification of the European Train Control System (ETCS), we design a controller for its cooperation protocol. For its free parameters, we successively identify constraints that are required to ensure collision freedom. We formally prove the parameter constraints to be sharp by characterizing them equivalently in terms of reachability properties of the hybrid system dynamics. Using our deductive verification tool KeYmaera, we formally verify controllability, safety, liveness, and reactivity properties of the ETCS protocol that entail collision freedom. We prove that the ETCS protocol remains correct even in the presence of perturbation by disturbances in the dynamics. We verify that safety is preserved when a PI controlled speed supervision is used.
Real World Verification
"... Abstract. Scalable handling of real arithmetic is a crucial part of the verification of hybrid systems, mathematical algorithms, and mixed analog/digital circuits. Despite substantial advances in verification technology, complexity issues with classical decision procedures are still a major obstacle ..."
Abstract

Cited by 17 (3 self)
 Add to MetaCart
(Show Context)
Abstract. Scalable handling of real arithmetic is a crucial part of the verification of hybrid systems, mathematical algorithms, and mixed analog/digital circuits. Despite substantial advances in verification technology, complexity issues with classical decision procedures are still a major obstacle for formal verification of realworld applications, e.g., in automotive and avionic industries. To identify strengths and weaknesses, we examine state of the art symbolic techniques and implementations for the universal fragment of realclosed fields: approaches based on quantifier elimination, Gröbner Bases, and semidefinite programming for the Positivstellensatz. Within a uniform context of the verification tool KeYmaera, we compare these approaches qualitatively and quantitatively on verification benchmarks from hybrid systems, textbook algorithms, and on geometric problems. Finally, we introduce a new decision procedure combining Gröbner Bases and semidefinite programming for the real Nullstellensatz that outperforms the individual approaches on an interesting set of problems.
Logics of Dynamical Systems
"... We study the logic of dynamical systems, that is, logics and proof principles for properties of dynamical systems. Dynamical systems are mathematical models describing how the state of a system evolves over time. They are important in modeling and understanding many applications, including embedded ..."
Abstract

Cited by 15 (15 self)
 Add to MetaCart
We study the logic of dynamical systems, that is, logics and proof principles for properties of dynamical systems. Dynamical systems are mathematical models describing how the state of a system evolves over time. They are important in modeling and understanding many applications, including embedded systems and cyberphysical systems. In discrete dynamical systems, the state evolves in discrete steps, one step at a time, as described by a difference equation or discrete state transition relation. In continuous dynamical systems, the state evolves continuously along a function, typically described by a differential equation. Hybrid dynamical systems or hybrid systems combine both discrete and continuous dynamics. Distributed hybrid systems combine distributed systems with hybrid systems, i.e., they are multiagent hybrid systems that interact through remote communication or physical interaction. Stochastic hybrid systems combine stochastic
Automatic invariant generation for hybrid systems using ideal fixed points
 In Hybrid Systems: Computation and Control
, 2010
"... We present computational techniques for automatically generating algebraic (polynomial equality) invariants for algebraic hybrid systems. Such systems involve ordinary differential equations with multivariate polynomial righthand sides. Our approach casts the problem of generating invariants for di ..."
Abstract

Cited by 14 (4 self)
 Add to MetaCart
(Show Context)
We present computational techniques for automatically generating algebraic (polynomial equality) invariants for algebraic hybrid systems. Such systems involve ordinary differential equations with multivariate polynomial righthand sides. Our approach casts the problem of generating invariants for differential equations as the greatest fixed point of a monotone operator over the lattice of ideals in a polynomial ring. We provide an algorithm to compute this monotone operator using basic ideas from commutative algebraic geometry. However, the resulting iteration sequence does not always converge to a fixed point, since the lattice of ideals over a polynomial ring does not satisfy the descending chain condition. We then present a boundeddegree relaxation based on the concept of “pseudo ideals”, due to Colón, that restricts ideal membership using multipliers with bounded degrees. We show that the monotone operator on bounded degree pseudo ideals is convergent and generates fixed points that can be used to generate useful algebraic invariants for nonlinear systems. The technique for continuous systems is then extended to consider hybrid systems with multiple modes and discrete transitions between modes. We have implemented the exact, nonconvergent iteration over ideals in combination with the bounded degree iteration over pseudo ideals to guarantee convergence. This has been applied to automatically infer useful and interesting polynomial invariants for some benchmark nonlinear systems.
The Structure of Differential Invariants and Differential Cut Elimination
, 2011
"... not be interpreted as representing the official policies, either expressed or implied, of any sponsoring institution or government. Keywords: Proof theory, differential equations, differential cut elimination, logics of programs, The biggest challenge in hybrid systems verification is the handling o ..."
Abstract

Cited by 14 (12 self)
 Add to MetaCart
not be interpreted as representing the official policies, either expressed or implied, of any sponsoring institution or government. Keywords: Proof theory, differential equations, differential cut elimination, logics of programs, The biggest challenge in hybrid systems verification is the handling of differential equations. Because computable closedform solutions only exist for very simple differential equations, proof certificates have been proposed for more scalable verification. Search procedures for these proof certificates are still rather adhoc, though, because the problem structure is only understood poorly. We investigate differential invariants, which can be checked for invariance along a differential equation just by using their differential structure and without having to solve the differential equation. We study the structural properties of differential invariants. To analyze tradeoffs for proof search complexity, we identify more than a dozen relations between several classes of differential invariants and compare their deductive power. As our main results, we analyze the deductive power of differential cuts and the deductive power of differential invariants with auxiliary differential variables. We refute the differential cut elimination hypothesis and show that differential cuts are fundamental proof principles that strictly increase the deductive power. We also prove that
Deductive Verification of Continuous Dynamical Systems
 LIPICS LEIBNIZ INTERNATIONAL PROCEEDINGS IN INFORMATICS
, 2009
"... We define the notion of inductive invariants for continuous dynamical systems and use it to present inference rules for safety verification of polynomial continuous dynamical systems. We present two different sound and complete inference rules, but neither of these rules can be effectively applied. ..."
Abstract

Cited by 12 (4 self)
 Add to MetaCart
(Show Context)
We define the notion of inductive invariants for continuous dynamical systems and use it to present inference rules for safety verification of polynomial continuous dynamical systems. We present two different sound and complete inference rules, but neither of these rules can be effectively applied. We then present several simpler and practical inference rules that are sound and relatively complete for different classes of inductive invariants. The simpler inference rules can be effectively checked when all involved sets are semialgebraic.
Relational Abstractions For Continuous and Hybrid Systems
"... Abstract. There has been much recent progress on invariant generation techniques for continuous systems whose dynamics are described by Ordinary Differential Equations (ODE). In this paper, we present a simple abstraction scheme for hybrid systems that abstracts continuous dynamics by relating any s ..."
Abstract

Cited by 11 (5 self)
 Add to MetaCart
(Show Context)
Abstract. There has been much recent progress on invariant generation techniques for continuous systems whose dynamics are described by Ordinary Differential Equations (ODE). In this paper, we present a simple abstraction scheme for hybrid systems that abstracts continuous dynamics by relating any state of the system to a state that can potentially be reached at some future time instant. Such relations are then interpreted as discrete transitions that model the continuous evolution of states over time. We adapt templatebased invariant generation techniques for continuous dynamics to derive relational abstractions for continuous systems with linear as well as nonlinear dynamics. Once a relational abstraction hasbeen derived,theresultingsystemis apurelydiscrete, infinitestatesystem. Therefore, techniquessuchas kinductioncan be directly applied to this abstraction to prove properties, and bounded modelchecking techniques applied to find potential falsifications. We present the basic underpinnings of our approach and demonstrate its use on many benchmark systems to derive simple and usable abstractions. 1