Results 1  10
of
131
PRISM: Probabilistic symbolic model checker
, 2002
"... Abstract. In this paper we describe PRISM, a tool being developed at the University of Birmingham for the analysis of probabilistic systems. PRISM supports two probabilistic models: continuoustime Markov chains and Markov decision processes. Analysis is performed through model checking such systems ..."
Abstract

Cited by 236 (13 self)
 Add to MetaCart
(Show Context)
Abstract. In this paper we describe PRISM, a tool being developed at the University of Birmingham for the analysis of probabilistic systems. PRISM supports two probabilistic models: continuoustime Markov chains and Markov decision processes. Analysis is performed through model checking such systems against specifications written in the probabilistic temporal logics PCTL and CSL. The tool features three model checking engines: one symbolic, using BDDs (binary decision diagrams) and MTBDDs (multiterminal BDDs); one based on sparse matrices; and one which combines both symbolic and sparse matrix methods. PRISM has been successfully used to analyse probabilistic termination, performance, dependability and quality of service properties for a range of systems, including randomized distributed algorithms, polling systems, workstation cluster and wireless cell communication. 1
Modelchecking algorithms for continuoustime Markov chains
 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
, 2003
"... Continuoustime Markov chains (CTMCs) have been widely used to determine system performance and dependability characteristics. Their analysis most often concerns the computation of steadystate and transientstate probabilities. This paper introduces a branching temporal logic for expressing realt ..."
Abstract

Cited by 235 (48 self)
 Add to MetaCart
(Show Context)
Continuoustime Markov chains (CTMCs) have been widely used to determine system performance and dependability characteristics. Their analysis most often concerns the computation of steadystate and transientstate probabilities. This paper introduces a branching temporal logic for expressing realtime probabilistic properties on CTMCs and presents approximate model checking algorithms for this logic. The logic, an extension of the continuous stochastic logic CSL of Aziz et al., contains a timebounded until operator to express probabilistic timing properties over paths as well as an operator to express steadystate probabilities. We show that the model checking problem for this logic reduces to a system of linear equations (for unbounded until and the steadystate operator) and a Volterra integral equation system (for timebounded until). We then show that the problem of modelchecking timebounded until properties can be reduced to the problem of computing transient state probabilities for CTMCs. This allows the verification of probabilistic timing properties by efficient techniques for transient analysis for CTMCs such as uniformization. Finally, we show that a variant of lumping equivalence (bisimulation), a wellknown notion for aggregating CTMCs, preserves the validity of all formulas in the logic.
Probabilistic Symbolic Model Checking with PRISM: A Hybrid Approach
 International Journal on Software Tools for Technology Transfer (STTT
, 2002
"... In this paper we introduce PRISM, a probabilistic model checker, and describe the ecient symbolic techniques we have developed during its implementation. PRISM is a tool for analysing probabilistic systems. It supports three models: discretetime Markov chains, continuoustime Markov chains and ..."
Abstract

Cited by 207 (32 self)
 Add to MetaCart
(Show Context)
In this paper we introduce PRISM, a probabilistic model checker, and describe the ecient symbolic techniques we have developed during its implementation. PRISM is a tool for analysing probabilistic systems. It supports three models: discretetime Markov chains, continuoustime Markov chains and Markov decision processes. Analysis is performed through model checking speci cations in the probabilistic temporal logics PCTL and CSL. Motivated by the success of model checkers such as SMV, which use BDDs (binary decision diagrams), we have developed an implementation of PCTL and CSL model checking based on MTBDDs (multiterminal BDDs) and BDDs. Existing work in this direction has been hindered by the generally poor performance of MTBDDbased numerical computation, which is often substantially slower than explicit methods using sparse matrices. We present a novel hybrid technique which combines aspects of symbolic and explicit approaches to overcome these performance problems. For typical examples, we achieve orders of magnitude speedup compared to MTBDDs and are able to almost match the speed of sparse matrices whilst maintaining considerable space savings.
Automatic verification of realtime systems with discrete probability distributions
 Theoretical Computer Science
, 1999
"... Abstract. We consider the timed automata model of [3], which allows the analysis of realtime systems expressed in terms of quantitative timing constraints. Traditional approaches to realtime system description express the model purely in terms of nondeterminism; however, we may wish to express the ..."
Abstract

Cited by 118 (33 self)
 Add to MetaCart
Abstract. We consider the timed automata model of [3], which allows the analysis of realtime systems expressed in terms of quantitative timing constraints. Traditional approaches to realtime system description express the model purely in terms of nondeterminism; however, we may wish to express the likelihood of the system making certain transitions. In this paper, we present a model for realtime systems augmented with discrete probability distributions. Furthermore, using the algorithm of [5] with fairness, we develop a model checking method for such models against temporal logic properties which can refer both to timing properties and probabilities, such as, “with probability 0.6 or greater, the clock x remains below 5 until clock y exceeds 2”. 1
On probabilistic model checking
, 1996
"... Abstract. This tutorial presents an overview of model checking for both discrete and continuoustime Markov chains (DTMCs and CTMCs). Model checking algorithms are given for verifying DTMCs and CTMCs against specifications written in probabilistic extensions of temporal logic, including quantitative ..."
Abstract

Cited by 107 (25 self)
 Add to MetaCart
(Show Context)
Abstract. This tutorial presents an overview of model checking for both discrete and continuoustime Markov chains (DTMCs and CTMCs). Model checking algorithms are given for verifying DTMCs and CTMCs against specifications written in probabilistic extensions of temporal logic, including quantitative properties with rewards. Example properties include the probability that a fault occurs and the expected number of faults in a given time period. We also describe the practical application of stochastic model checking with the probabilistic model checker PRISM by outlining the main features supported by PRISM and three realworld case studies: a probabilistic security protocol, dynamic power management and a biological pathway. 1
Symbolic model checking for probabilistic processes
 IN PROCEEDINGS OF ICALP '97
, 1997
"... We introduce a symbolic model checking procedure for Probabilistic Computation Tree Logic PCTL over labelled Markov chains as models. Model checking for probabilistic logics typically involves solving linear equation systems in order to ascertain the probability of a given formula holding in a stat ..."
Abstract

Cited by 97 (29 self)
 Add to MetaCart
(Show Context)
We introduce a symbolic model checking procedure for Probabilistic Computation Tree Logic PCTL over labelled Markov chains as models. Model checking for probabilistic logics typically involves solving linear equation systems in order to ascertain the probability of a given formula holding in a state. Our algorithm is based on the idea of representing the matrices used in the linear equation systems by MultiTerminal Binary Decision Diagrams (MTBDDs) introduced in Clarke et al [14]. Our procedure, based on the algorithm used by Hansson and Jonsson [24], uses BDDs to represent formulas and MTBDDs to represent Markov chains, and is efficient because it avoids explicit state space construction. A PCTL model checker is being implemented in Verus [9].
Symbolic Model Checking of Probabilistic Timed Automata Using Backwards Reachability
, 2000
"... We consider probabilistic timed automata of [13], an extension of the timed automata model of [2] with discrete probability distributions. In contrast to timed automata, which model realtime systems purely in terms of nondeterminism, our model allows to express the likelihood of the system makin ..."
Abstract

Cited by 82 (26 self)
 Add to MetaCart
We consider probabilistic timed automata of [13], an extension of the timed automata model of [2] with discrete probability distributions. In contrast to timed automata, which model realtime systems purely in terms of nondeterminism, our model allows to express the likelihood of the system making certain transitions, and is thus appropriate for modelling faulttolerance and probabilistic failures. We present a symbolic model checking algorithm for the existential fragment of the logic PTCTL of [13] based on backward reachability as in [12]. The logic allows us to specify properties such as \with probability 0.99 or greater, it is possible to correctly deliver a data packet within 5 time units", or \with probability 0.87 or greater, the system never enters an error state".
Implementation of Symbolic Model Checking for Probabilistic Systems
, 2002
"... In this thesis, we present ecient implementation techniques for probabilistic model checking, a method which can be used to analyse probabilistic systems such as randomised distributed algorithms, faulttolerant processes and communication networks. A probabilistic model checker inputs a probabilist ..."
Abstract

Cited by 72 (21 self)
 Add to MetaCart
(Show Context)
In this thesis, we present ecient implementation techniques for probabilistic model checking, a method which can be used to analyse probabilistic systems such as randomised distributed algorithms, faulttolerant processes and communication networks. A probabilistic model checker inputs a probabilistic model and a speci cation, such as \the message will be delivered with probability 1", \the probability of shutdown occurring is at most 0.02" or \the probability of a leader being elected within 5 rounds is at least 0.98", and can automatically verify if the speci cation is true in the model.
Comparative branchingtime semantics for Markov chains
 Information and Computation
, 2003
"... This paper presents various semantics in the branchingtime spectrum of discretetime and continuoustime Markov chains (DTMCs and CTMCs). Strong and weak bisimulation equivalence and simulation preorders are covered and are logically characterised in terms of the temporal logics PCTL (Probabilisti ..."
Abstract

Cited by 64 (17 self)
 Add to MetaCart
(Show Context)
This paper presents various semantics in the branchingtime spectrum of discretetime and continuoustime Markov chains (DTMCs and CTMCs). Strong and weak bisimulation equivalence and simulation preorders are covered and are logically characterised in terms of the temporal logics PCTL (Probabilistic Computation Tree Logic) and CSL (Continuous Stochastic Logic). Apart from presenting various existing branchingtime relations in a uniform manner, this paper presents the following new results: (i) strong simulation for CTMCs, (ii) weak simulation for CTMCs and DTMCs, (iii) logical characterizations thereof (including weak bisimulation for DTMCs), (iv) a relation between weak bisimulation and weak simulation equivalence, and (v) various connections between equivalences and preorders in the continuous and discretetime setting. The results are summarized in a branchingtime spectrum for DTMCs and CTMCs elucidating their semantics as well as their relationship. Key Words: comparative semantics, Markov chain, (weak) simulation, (weak) bisimulation, temporal logic
Model Checking for Probability and Time: From Theory to Practice
 In Proc. Logic in Computer Science
, 2003
"... Probability features increasingly often in software and hardware systems: it is used in distributed coordination and routing problems, to model faulttolerance and performance, and to provide adaptive resource management strategies. Probabilistic model checking is an automatic procedure for establi ..."
Abstract

Cited by 63 (1 self)
 Add to MetaCart
(Show Context)
Probability features increasingly often in software and hardware systems: it is used in distributed coordination and routing problems, to model faulttolerance and performance, and to provide adaptive resource management strategies. Probabilistic model checking is an automatic procedure for establishing if a desired property holds in a probabilistic model, aimed at verifying probabilistic specifications such as "leader election is eventually resolved with probability 1", "the chance of shutdown occurring is at most 0.01%", and "the probability that a message will be delivered within 30ms is at least 0.75". A probabilistic model checker calculates the probability of a given temporal logic property being satisfied, as opposed to validity. In contrast to conventional model checkers, which rely on reachability analysis of the underlying transition system graph, probabilistic model checking additionally involves numerical solutions of linear equations and linear programming problems. This paper reports our experience with implementing PRISM (www.cs.bham.ac.uk/dxp/ prism/), a Probabilistic Symbolic Model Checker, demonstrates its usefulness in analysing realworld probabilistic protocols, and outlines future challenges for this research direction.