Results 1  10
of
89
PRISM: Probabilistic symbolic model checker
, 2002
"... Abstract. In this paper we describe PRISM, a tool being developed at the University of Birmingham for the analysis of probabilistic systems. PRISM supports two probabilistic models: continuoustime Markov chains and Markov decision processes. Analysis is performed through model checking such systems ..."
Abstract

Cited by 235 (14 self)
 Add to MetaCart
(Show Context)
Abstract. In this paper we describe PRISM, a tool being developed at the University of Birmingham for the analysis of probabilistic systems. PRISM supports two probabilistic models: continuoustime Markov chains and Markov decision processes. Analysis is performed through model checking such systems against specifications written in the probabilistic temporal logics PCTL and CSL. The tool features three model checking engines: one symbolic, using BDDs (binary decision diagrams) and MTBDDs (multiterminal BDDs); one based on sparse matrices; and one which combines both symbolic and sparse matrix methods. PRISM has been successfully used to analyse probabilistic termination, performance, dependability and quality of service properties for a range of systems, including randomized distributed algorithms, polling systems, workstation cluster and wireless cell communication. 1
Modelchecking algorithms for continuoustime Markov chains
 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
, 2003
"... Continuoustime Markov chains (CTMCs) have been widely used to determine system performance and dependability characteristics. Their analysis most often concerns the computation of steadystate and transientstate probabilities. This paper introduces a branching temporal logic for expressing realt ..."
Abstract

Cited by 231 (45 self)
 Add to MetaCart
(Show Context)
Continuoustime Markov chains (CTMCs) have been widely used to determine system performance and dependability characteristics. Their analysis most often concerns the computation of steadystate and transientstate probabilities. This paper introduces a branching temporal logic for expressing realtime probabilistic properties on CTMCs and presents approximate model checking algorithms for this logic. The logic, an extension of the continuous stochastic logic CSL of Aziz et al., contains a timebounded until operator to express probabilistic timing properties over paths as well as an operator to express steadystate probabilities. We show that the model checking problem for this logic reduces to a system of linear equations (for unbounded until and the steadystate operator) and a Volterra integral equation system (for timebounded until). We then show that the problem of modelchecking timebounded until properties can be reduced to the problem of computing transient state probabilities for CTMCs. This allows the verification of probabilistic timing properties by efficient techniques for transient analysis for CTMCs such as uniformization. Finally, we show that a variant of lumping equivalence (bisimulation), a wellknown notion for aggregating CTMCs, preserves the validity of all formulas in the logic.
Probabilistic Symbolic Model Checking with PRISM: A Hybrid Approach
 International Journal on Software Tools for Technology Transfer (STTT
, 2002
"... In this paper we introduce PRISM, a probabilistic model checker, and describe the ecient symbolic techniques we have developed during its implementation. PRISM is a tool for analysing probabilistic systems. It supports three models: discretetime Markov chains, continuoustime Markov chains and ..."
Abstract

Cited by 201 (32 self)
 Add to MetaCart
(Show Context)
In this paper we introduce PRISM, a probabilistic model checker, and describe the ecient symbolic techniques we have developed during its implementation. PRISM is a tool for analysing probabilistic systems. It supports three models: discretetime Markov chains, continuoustime Markov chains and Markov decision processes. Analysis is performed through model checking speci cations in the probabilistic temporal logics PCTL and CSL. Motivated by the success of model checkers such as SMV, which use BDDs (binary decision diagrams), we have developed an implementation of PCTL and CSL model checking based on MTBDDs (multiterminal BDDs) and BDDs. Existing work in this direction has been hindered by the generally poor performance of MTBDDbased numerical computation, which is often substantially slower than explicit methods using sparse matrices. We present a novel hybrid technique which combines aspects of symbolic and explicit approaches to overcome these performance problems. For typical examples, we achieve orders of magnitude speedup compared to MTBDDs and are able to almost match the speed of sparse matrices whilst maintaining considerable space savings.
On probabilistic model checking
, 1996
"... Abstract. This tutorial presents an overview of model checking for both discrete and continuoustime Markov chains (DTMCs and CTMCs). Model checking algorithms are given for verifying DTMCs and CTMCs against specifications written in probabilistic extensions of temporal logic, including quantitative ..."
Abstract

Cited by 106 (26 self)
 Add to MetaCart
(Show Context)
Abstract. This tutorial presents an overview of model checking for both discrete and continuoustime Markov chains (DTMCs and CTMCs). Model checking algorithms are given for verifying DTMCs and CTMCs against specifications written in probabilistic extensions of temporal logic, including quantitative properties with rewards. Example properties include the probability that a fault occurs and the expected number of faults in a given time period. We also describe the practical application of stochastic model checking with the probabilistic model checker PRISM by outlining the main features supported by PRISM and three realworld case studies: a probabilistic security protocol, dynamic power management and a biological pathway. 1
Probabilistic model checking of complex biological pathways
, 2006
"... Abstract. Probabilistic model checking is a formal verification technique that has been successfully applied to the analysis of systems from a broad range of domains, including security and communication protocols, distributed algorithms and power management. In this paper we illustrate its applicab ..."
Abstract

Cited by 94 (18 self)
 Add to MetaCart
(Show Context)
Abstract. Probabilistic model checking is a formal verification technique that has been successfully applied to the analysis of systems from a broad range of domains, including security and communication protocols, distributed algorithms and power management. In this paper we illustrate its applicability to a complex biological system: the FGF (Fibroblast Growth Factor) signalling pathway. We give a detailed description of how this case study can be modelled in the probabilistic model checker PRISM, discussing some of the issues that arise in doing so, and show how we can thus examine a rich selection of quantitative properties of this model. We present experimental results for the case study under several different scenarios and provide a detailed analysis, illustrating how this approach can be used to yield a better understanding of the dynamics of the pathway. 1
Numerical vs. statistical probabilistic model checking: An empirical study
 IN 10TH INTERNATIONAL CONFERENCE ON TOOLS AND ALGORITHMS FOR THE CONSTRUCTION AND ANALYSIS OF SYSTEMS (TACAS’04
, 2004
"... Numerical analysis based on uniformisation and statistical techniques based on sampling and simulation are two distinct approaches for transient analysis of stochastic systems. We compare the two solution techniques when applied to the verification of timebounded until formulae in the temporal st ..."
Abstract

Cited by 79 (12 self)
 Add to MetaCart
Numerical analysis based on uniformisation and statistical techniques based on sampling and simulation are two distinct approaches for transient analysis of stochastic systems. We compare the two solution techniques when applied to the verification of timebounded until formulae in the temporal stochastic logic CSL. This study differs from most previous comparisons of numerical and statistical approaches in that CSL model checking is a hypothesis testing problem rather than a parameter estimation problem. We can therefore rely on highly efficient sequential acceptance sampling tests, which enables statistical solution techniques to quickly return a result with some uncertainty. This suggests that statistical techniques can be useful as a first resort during system prototyping, rather than as a last resort as often suggested. We also propose a novel combination of the two solution techniques for verifying CSL queries with nested probabilistic operators.
Implementation of Symbolic Model Checking for Probabilistic Systems
, 2002
"... In this thesis, we present ecient implementation techniques for probabilistic model checking, a method which can be used to analyse probabilistic systems such as randomised distributed algorithms, faulttolerant processes and communication networks. A probabilistic model checker inputs a probabilist ..."
Abstract

Cited by 70 (21 self)
 Add to MetaCart
(Show Context)
In this thesis, we present ecient implementation techniques for probabilistic model checking, a method which can be used to analyse probabilistic systems such as randomised distributed algorithms, faulttolerant processes and communication networks. A probabilistic model checker inputs a probabilistic model and a speci cation, such as \the message will be delivered with probability 1", \the probability of shutdown occurring is at most 0.02" or \the probability of a leader being elected within 5 rounds is at least 0.98", and can automatically verify if the speci cation is true in the model.
Comparative branchingtime semantics for Markov chains
 Information and Computation
, 2003
"... This paper presents various semantics in the branchingtime spectrum of discretetime and continuoustime Markov chains (DTMCs and CTMCs). Strong and weak bisimulation equivalence and simulation preorders are covered and are logically characterised in terms of the temporal logics PCTL (Probabilisti ..."
Abstract

Cited by 62 (16 self)
 Add to MetaCart
(Show Context)
This paper presents various semantics in the branchingtime spectrum of discretetime and continuoustime Markov chains (DTMCs and CTMCs). Strong and weak bisimulation equivalence and simulation preorders are covered and are logically characterised in terms of the temporal logics PCTL (Probabilistic Computation Tree Logic) and CSL (Continuous Stochastic Logic). Apart from presenting various existing branchingtime relations in a uniform manner, this paper presents the following new results: (i) strong simulation for CTMCs, (ii) weak simulation for CTMCs and DTMCs, (iii) logical characterizations thereof (including weak bisimulation for DTMCs), (iv) a relation between weak bisimulation and weak simulation equivalence, and (v) various connections between equivalences and preorders in the continuous and discretetime setting. The results are summarized in a branchingtime spectrum for DTMCs and CTMCs elucidating their semantics as well as their relationship. Key Words: comparative semantics, Markov chain, (weak) simulation, (weak) bisimulation, temporal logic
Model Checking for Probability and Time: From Theory to Practice
 In Proc. Logic in Computer Science
, 2003
"... Probability features increasingly often in software and hardware systems: it is used in distributed coordination and routing problems, to model faulttolerance and performance, and to provide adaptive resource management strategies. Probabilistic model checking is an automatic procedure for establi ..."
Abstract

Cited by 61 (1 self)
 Add to MetaCart
(Show Context)
Probability features increasingly often in software and hardware systems: it is used in distributed coordination and routing problems, to model faulttolerance and performance, and to provide adaptive resource management strategies. Probabilistic model checking is an automatic procedure for establishing if a desired property holds in a probabilistic model, aimed at verifying probabilistic specifications such as "leader election is eventually resolved with probability 1", "the chance of shutdown occurring is at most 0.01%", and "the probability that a message will be delivered within 30ms is at least 0.75". A probabilistic model checker calculates the probability of a given temporal logic property being satisfied, as opposed to validity. In contrast to conventional model checkers, which rely on reachability analysis of the underlying transition system graph, probabilistic model checking additionally involves numerical solutions of linear equations and linear programming problems. This paper reports our experience with implementing PRISM (www.cs.bham.ac.uk/dxp/ prism/), a Probabilistic Symbolic Model Checker, demonstrates its usefulness in analysing realworld probabilistic protocols, and outlines future challenges for this research direction.
Analysis of signalling pathways using continuous time Markov chains
 Transactions on Computational Systems Biology
, 2006
"... Abstract. We describe a quantitative modelling and analysis approach for signal transduction networks. We illustrate the approach with an example, the RKIP inhibited ERK pathway [CSK + 03]. Our models are high level descriptions of continuous time Markov chains: proteins are modelled by synchronous ..."
Abstract

Cited by 57 (14 self)
 Add to MetaCart
Abstract. We describe a quantitative modelling and analysis approach for signal transduction networks. We illustrate the approach with an example, the RKIP inhibited ERK pathway [CSK + 03]. Our models are high level descriptions of continuous time Markov chains: proteins are modelled by synchronous processes and reactions by transitions. Concentrations are modelled by discrete, abstract quantities. The main advantage of our approach is that using a (continuous time) stochastic logic and the PRISM model checker, we can perform quantitative analysis such as what is the probability that if a concentration reaches a certain level, it will remain at that level thereafter? or how does varying a given reaction rate affect that probability? We also perform standard simulations and compare our results with a traditional ordinary differential equation model. An interesting result is that for the example pathway, only a small number of discrete data values is required to render the simulations practically indistinguishable.