Results 1  10
of
3,134
Grounding in communication
 In
, 1991
"... We give a general analysis of a class of pairs of positive selfadjoint operators A and B for which A + XB has a limit (in strong resolvent sense) as h10 which is an operator A, # A! Recently, Klauder [4] has discussed the following example: Let A be the operator(d2/A2) + x2 on L2(R, dx) and let ..."
Abstract

Cited by 1122 (20 self)
 Add to MetaCart
(Show Context)
We give a general analysis of a class of pairs of positive selfadjoint operators A and B for which A + XB has a limit (in strong resolvent sense) as h10 which is an operator A, # A! Recently, Klauder [4] has discussed the following example: Let A be the operator(d2/A2) + x2 on L2(R, dx) and let B = 1 x 1s. The eigenvectors and eigenvalues of A are, of course, well known to be the Hermite functions, H,(x), n = 0, l,... and E, = 2n + 1. Klauder then considers the eigenvectors of A + XB (A> 0) by manipulations with the ordinary differential equation (we consider the domain questions, which Klauder ignores, below). He finds that the eigenvalues E,(X) and eigenvectors &(A) do not converge to 8, and H, but rather AO) + (en 4 Ho+, J%(X)+ gn+1 I n = 0, 2,..., We wish to discuss in detail the general phenomena which Klauder has uncovered. We freely use the techniques of quadratic forms and strong resolvent convergence; see e.g. [3], [5]. Once one decides to analyze Klauder’s phenomenon in the language of quadratic forms, the phenomenon is quite easy to understand and control. In fact, the theory is implicit in Kato’s book [3, VIII.31.
Stochastic Perturbation Theory
, 1988
"... . In this paper classical matrix perturbation theory is approached from a probabilistic point of view. The perturbed quantity is approximated by a firstorder perturbation expansion, in which the perturbation is assumed to be random. This permits the computation of statistics estimating the variatio ..."
Abstract

Cited by 907 (36 self)
 Add to MetaCart
(Show Context)
. In this paper classical matrix perturbation theory is approached from a probabilistic point of view. The perturbed quantity is approximated by a firstorder perturbation expansion, in which the perturbation is assumed to be random. This permits the computation of statistics estimating the variation in the perturbed quantity. Up to the higherorder terms that are ignored in the expansion, these statistics tend to be more realistic than perturbation bounds obtained in terms of norms. The technique is applied to a number of problems in matrix perturbation theory, including least squares and the eigenvalue problem. Key words. perturbation theory, random matrix, linear system, least squares, eigenvalue, eigenvector, invariant subspace, singular value AMS(MOS) subject classifications. 15A06, 15A12, 15A18, 15A52, 15A60 1. Introduction. Let A be a matrix and let F be a matrix valued function of A. Two principal problems of matrix perturbation theory are the following. Given a matrix E, pr...
Matrix Polynomials
, 1982
"... Abstract. The pseudospectra of a matrix polynomial P (λ) are sets of complex numbers that are eigenvalues of matrix polynomials which are near to P (λ), i.e., their coefficients are within some fixed magnitude of the coefficients of P (λ). Pseudospectra provide important insights into the sensitivit ..."
Abstract

Cited by 304 (9 self)
 Add to MetaCart
(Show Context)
Abstract. The pseudospectra of a matrix polynomial P (λ) are sets of complex numbers that are eigenvalues of matrix polynomials which are near to P (λ), i.e., their coefficients are within some fixed magnitude of the coefficients of P (λ). Pseudospectra provide important insights into the sensitivity of eigenvalues under perturbations, and have several applications. First, qualitative properties concerning boundedness and connected components of pseudospectra are obtained. Then an accurate continuation algorithm for the numerical determination of the boundary of pseudospectra of matrix polynomials is devised and illustrated. This algorithm is based on a predictioncorrection scheme.
Regularized estimation of large covariance matrices
 Ann. Statist
, 2008
"... This paper considers estimating a covariance matrix of p variables from n observations by either banding or tapering the sample covariance matrix, or estimating a banded version of the inverse of the covariance. We show that these estimates are consistent in the operator norm as long as (log p)/n → ..."
Abstract

Cited by 185 (14 self)
 Add to MetaCart
(Show Context)
This paper considers estimating a covariance matrix of p variables from n observations by either banding or tapering the sample covariance matrix, or estimating a banded version of the inverse of the covariance. We show that these estimates are consistent in the operator norm as long as (log p)/n → 0, and obtain explicit rates. The results are uniform over some fairly natural wellconditioned families of covariance matrices. We also introduce an analogue of the Gaussian white noise model and show that if the population covariance is embeddable in that model and wellconditioned, then the banded approximations produce consistent estimates of the eigenvalues and associated eigenvectors of the covariance matrix. The results can be extended to smooth versions of banding and to nonGaussian distributions with sufficiently short tails. A resampling approach is proposed for choosing the banding parameter in practice. This approach is illustrated numerically on both simulated and real data. 1. Introduction. Estimation
Finite element exterior calculus, homological techniques, and applications
 ACTA NUMERICA
, 2006
"... ..."
The Classical Moment Problem as a SelfAdjoint Finite Difference Operator
, 1998
"... This is a comprehensive exposition of the classical moment problem using methods from the theory of finite difference operators. Among the advantages of this approach is that the Nevanlinna functions appear as elements of a transfer matrix and convergence of Pade approximants appears as the strong r ..."
Abstract

Cited by 148 (8 self)
 Add to MetaCart
(Show Context)
This is a comprehensive exposition of the classical moment problem using methods from the theory of finite difference operators. Among the advantages of this approach is that the Nevanlinna functions appear as elements of a transfer matrix and convergence of Pade approximants appears as the strong resolvent convergence of finite matrix approximations to a Jacobi matrix. As a bonus of this, we obtain new results on the convergence of certain Pade approximants for series of Hamburger.
Analysis of some Krylov subspace approximations to the matrix exponential operator
 SIAM J. Numer. Anal
, 1992
"... Abstract. In this note we present a theoretical analysis of some Krylov subspace approximations to the matrix exponential operation exp(A)v and establish a priori and a posteriori error estimates. Several such approximations are considered. The main idea of these techniques is to approximately proje ..."
Abstract

Cited by 135 (7 self)
 Add to MetaCart
Abstract. In this note we present a theoretical analysis of some Krylov subspace approximations to the matrix exponential operation exp(A)v and establish a priori and a posteriori error estimates. Several such approximations are considered. The main idea of these techniques is to approximately project the exponential operator onto a small Krylov subspace and carry out the resulting small exponential matrix computation accurately. This general approach, which has been used with success in several applications, provides a systematic way of defining high order explicittype schemes for solving systems of ordinary differential equations or timedependent Partial Differential Equations. 1. Introduction. The