Results 1  10
of
120
Improved heterogeneous distance functions
 Journal of Artificial Intelligence Research
, 1997
"... Instancebased learning techniques typically handle continuous and linear input values well, but often do not handle nominal input attributes appropriately. The Value Difference Metric (VDM) was designed to find reasonable distance values between nominal attribute values, but it largely ignores cont ..."
Abstract

Cited by 285 (9 self)
 Add to MetaCart
(Show Context)
Instancebased learning techniques typically handle continuous and linear input values well, but often do not handle nominal input attributes appropriately. The Value Difference Metric (VDM) was designed to find reasonable distance values between nominal attribute values, but it largely ignores continuous attributes, requiring discretization to map continuous values into nominal values. This paper proposes three new heterogeneous distance functions, called the Heterogeneous Value Difference Metric (HVDM), the Interpolated Value Difference Metric (IVDM), and the Windowed Value Difference Metric (WVDM). These new distance functions are designed to handle applications with nominal attributes, continuous attributes, or both. In experiments on 48 applications the new distance metrics achieve higher classification accuracy on average than three previous distance functions on those datasets that have both nominal and continuous attributes.
Operations for Learning with Graphical Models
 Journal of Artificial Intelligence Research
, 1994
"... This paper is a multidisciplinary review of empirical, statistical learning from a graphical model perspective. Wellknown examples of graphical models include Bayesian networks, directed graphs representing a Markov chain, and undirected networks representing a Markov field. These graphical models ..."
Abstract

Cited by 277 (13 self)
 Add to MetaCart
(Show Context)
This paper is a multidisciplinary review of empirical, statistical learning from a graphical model perspective. Wellknown examples of graphical models include Bayesian networks, directed graphs representing a Markov chain, and undirected networks representing a Markov field. These graphical models are extended to model data analysis and empirical learning using the notation of plates. Graphical operations for simplifying and manipulating a problem are provided including decomposition, differentiation, and the manipulation of probability models from the exponential family. Two standard algorithm schemas for learning are reviewed in a graphical framework: Gibbs sampling and the expectation maximization algorithm. Using these operations and schemas, some popular algorithms can be synthesized from their graphical specification. This includes versions of linear regression, techniques for feedforward networks, and learning Gaussian and discrete Bayesian networks from data. The paper conclu...
Automatic Construction of Decision Trees from Data: A MultiDisciplinary Survey
 Data Mining and Knowledge Discovery
, 1997
"... Decision trees have proved to be valuable tools for the description, classification and generalization of data. Work on constructing decision trees from data exists in multiple disciplines such as statistics, pattern recognition, decision theory, signal processing, machine learning and artificial ne ..."
Abstract

Cited by 222 (1 self)
 Add to MetaCart
(Show Context)
Decision trees have proved to be valuable tools for the description, classification and generalization of data. Work on constructing decision trees from data exists in multiple disciplines such as statistics, pattern recognition, decision theory, signal processing, machine learning and artificial neural networks. Researchers in these disciplines, sometimes working on quite different problems, identified similar issues and heuristics for decision tree construction. This paper surveys existing work on decision tree construction, attempting to identify the important issues involved, directions the work has taken and the current state of the art. Keywords: classification, treestructured classifiers, data compaction 1. Introduction Advances in data collection methods, storage and processing technology are providing a unique challenge and opportunity for automated data exploration techniques. Enormous amounts of data are being collected daily from major scientific projects e.g., Human Genome...
A Guide to the Literature on Learning Probabilistic Networks From Data
, 1996
"... This literature review discusses different methods under the general rubric of learning Bayesian networks from data, and includes some overlapping work on more general probabilistic networks. Connections are drawn between the statistical, neural network, and uncertainty communities, and between the ..."
Abstract

Cited by 203 (0 self)
 Add to MetaCart
This literature review discusses different methods under the general rubric of learning Bayesian networks from data, and includes some overlapping work on more general probabilistic networks. Connections are drawn between the statistical, neural network, and uncertainty communities, and between the different methodological communities, such as Bayesian, description length, and classical statistics. Basic concepts for learning and Bayesian networks are introduced and methods are then reviewed. Methods are discussed for learning parameters of a probabilistic network, for learning the structure, and for learning hidden variables. The presentation avoids formal definitions and theorems, as these are plentiful in the literature, and instead illustrates key concepts with simplified examples. Keywords Bayesian networks, graphical models, hidden variables, learning, learning structure, probabilistic networks, knowledge discovery. I. Introduction Probabilistic networks or probabilistic gra...
Multivariate Decision Trees
, 1992
"... Multivariate decision trees overcome a representational limitation of univariate decision trees: univariate decision trees are restricted to splits of the instance space that are orthogonal to the feature's axis. This paper discusses the following issues for constructing multivariate decision t ..."
Abstract

Cited by 134 (7 self)
 Add to MetaCart
Multivariate decision trees overcome a representational limitation of univariate decision trees: univariate decision trees are restricted to splits of the instance space that are orthogonal to the feature's axis. This paper discusses the following issues for constructing multivariate decision trees: representing a multivariate test, including symbolic and numeric features, learning the coefficients of a multivariate test, selecting the features to include in a test, and pruning of multivariate decision trees. We present some new and review some wellknown methods for forming multivariate decision trees. The methods are compared across a variety of learning tasks to assess each method's ability to find concise, accurate decision trees. The results demonstrate that some multivariate methods are more effective than others. In addition, the experiments confirm that allowing multivariate tests improves the accuracy of the resulting decision tree over univariate trees. Contents 1 Introduc...
Systems for Knowledge Discovery in Databases
 IEEE Transactions On Knowledge And Data Engineering
, 1993
"... The automated discovery of knowledge in databases is becoming increasingly important as the world's wealth of data continues to grow exponentially. Knowledgediscovery systems face challenging problems from realworld databases which tend to be dynamic, incomplete, redundant, noisy, sparse, and ..."
Abstract

Cited by 113 (8 self)
 Add to MetaCart
The automated discovery of knowledge in databases is becoming increasingly important as the world's wealth of data continues to grow exponentially. Knowledgediscovery systems face challenging problems from realworld databases which tend to be dynamic, incomplete, redundant, noisy, sparse, and very large. This paper addresses these problems and describes some techniques for handling them. A model of an idealized knowledgediscovery system is presented as a reference for studying and designing new systems. This model is used in the comparison of three systems: CoverStory, EXPLORA, and the Knowledge Discovery Workbench. The deficiencies of existing systems relative to the model reveal several open problems for future research.
Top 10 algorithms in data mining
, 2007
"... Abstract This paper presents the top 10 data mining algorithms identified by the IEEE International Conference on Data Mining (ICDM) in December 2006: C4.5, kMeans, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. These top 10 algorithms are among the most influential data mining a ..."
Abstract

Cited by 113 (2 self)
 Add to MetaCart
(Show Context)
Abstract This paper presents the top 10 data mining algorithms identified by the IEEE International Conference on Data Mining (ICDM) in December 2006: C4.5, kMeans, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. These top 10 algorithms are among the most influential data mining algorithms in the research community. With each algorithm, we provide a description of the algorithm, discuss the impact of the algorithm, and review current and further research on the algorithm. These 10 algorithms cover classification,
Symbolic and neural learning algorithms: an experimental comparison
 Machine Learning
, 1991
"... Abstract Despite the fact that many symbolic and neural network (connectionist) learning algorithms address the same problem of learning from classified examples, very little is known regarding their comparative strengths and weaknesses. Experiments comparing the ID3 symbolic learning algorithm with ..."
Abstract

Cited by 109 (6 self)
 Add to MetaCart
Abstract Despite the fact that many symbolic and neural network (connectionist) learning algorithms address the same problem of learning from classified examples, very little is known regarding their comparative strengths and weaknesses. Experiments comparing the ID3 symbolic learning algorithm with the perception and backpropagation neural learning algorithms have been performed using five large, realworld data sets. Overall, backpropagation performs slightly better than the other two algorithms in terms of classification accuracy on new examples, but takes much longer to train. Experimental results suggest that backpropagation can work significantly better on data sets containing numerical data. Also analyzed empirically are the effects of (1) the amount of training data, (2) imperfect training examples, and (3) the encoding of the desired outputs. Backpropagation occasionally outperforms the other two systems when given relatively small amounts of training data. It is slightly more accurate than ID3 when examples are noisy or incompletely specified. Finally, backpropagation more effectively utilizes a &quot;distributed &quot; output encoding.
Inductive and Bayesian learning in medical diagnosis
 Applied Artificial Intelligence
, 1993
"... Abstract. Although successful in medical diagnostic problems, inductive learning systems were not widely accepted in medical practice. In this paper two di erent approaches to machine learning in medical applications are compared: the system for inductive learning of decision trees Assistant, and t ..."
Abstract

Cited by 89 (13 self)
 Add to MetaCart
(Show Context)
Abstract. Although successful in medical diagnostic problems, inductive learning systems were not widely accepted in medical practice. In this paper two di erent approaches to machine learning in medical applications are compared: the system for inductive learning of decision trees Assistant, and the naive Bayesian classi er. Both methodologies were tested in four medical diagnostic problems: localization of primary tumor, prognostics of recurrence of breast cancer, diagnosis of thyroid diseases, and rheumatology. The accuracy of automatically acquired diagnostic knowledge from stored data records is compared and the interpretation of the knowledge and the explanation ability of the classi cation process of each system is discussed. Surprisingly, thenaiveBayesian classi er is superior to Assistant in classi cation accuracy and explanation ability, while the interpretation of the acquired knowledge seems to be equally valuable. In addition, two extensions to naive Bayesian classi er are brie y described: dealing with continuous attributes, and discovering the dependencies among attributes.
A Theory of Learning Classification Rules
, 1992
"... The main contributions of this thesis are a Bayesian theory of learning classification rules, the unification and comparison of this theory with some previous theories of learning, and two extensive applications of the theory to the problems of learning class probability trees and bounding error whe ..."
Abstract

Cited by 88 (6 self)
 Add to MetaCart
The main contributions of this thesis are a Bayesian theory of learning classification rules, the unification and comparison of this theory with some previous theories of learning, and two extensive applications of the theory to the problems of learning class probability trees and bounding error when learning logical rules. The thesis is motivated by considering some current research issues in machine learning such as bias, overfitting and search, and considering the requirements placed on a learning system when it is used for knowledge acquisition. Basic Bayesian decision theory relevant to the problem of learning classification rules is reviewed, then a Bayesian framework for such learning is presented. The framework has three components: the hypothesis space, the learning protocol, and criteria for successful learning. Several learning protocols are analysed in detail: queries, logical, noisy, uncertain and positiveonly examples. The analysis is done by interpreting a protocol as a...