Results 1  10
of
178
Hot sax: Efficiently finding the most unusual time series subsequence
, 2005
"... In this work, we introduce the new problem of finding time series discords. Time series discords are subsequences of a longer time series that are maximally different to all the rest of the time series subsequences. They thus capture the sense of the most unusual subsequence within a time series. Ti ..."
Abstract

Cited by 103 (4 self)
 Add to MetaCart
(Show Context)
In this work, we introduce the new problem of finding time series discords. Time series discords are subsequences of a longer time series that are maximally different to all the rest of the time series subsequences. They thus capture the sense of the most unusual subsequence within a time series. Time series discords have many uses for data mining, including improving the quality of clustering, data cleaning, summarization, and anomaly detection. As we will show, discords are particularly attractive as anomaly detectors because they only require one intuitive parameter (the length of the subsequence) unlike most anomaly detection algorithms that typically require many parameters. We evaluate our work with a comprehensive set of experiments. In particular, we demonstrate the utility of discords with objective experiments on domains as diverse as Space Shuttle telemetry monitoring, medicine, surveillance, and industry, and we demonstrate the effectiveness of our discord discovery algorithm with more than one million experiments, on 82 different datasets from diverse domains.
Making Timeseries Classification More Accurate Using Learned Constraints
, 2004
"... It has long been known that Dynamic Time Warping (DTW) is superior to Euclidean distance for classification and clustering of time series. However, until lately, most research has utilized Euclidean distance because it is more efficiently calculated. A recently introduced technique that greatly miti ..."
Abstract

Cited by 79 (18 self)
 Add to MetaCart
(Show Context)
It has long been known that Dynamic Time Warping (DTW) is superior to Euclidean distance for classification and clustering of time series. However, until lately, most research has utilized Euclidean distance because it is more efficiently calculated. A recently introduced technique that greatly mitigates DTWs demanding CPU time has sparked a flurry of research activity. However, the technique and its many extensions still only allow DTW to be applied to moderately large datasets. In addition, almost all of the research on DTW has focused exclusively on speeding up its calculation; there has been little work done on improving its accuracy. In this work, we target the accuracy aspect of DTW performance and introduce a new framework that learns arbitrary constraints on the warping path of the DTW calculation. Apart from improving the accuracy of classification, our technique as a side effect speeds up DTW by a wide margin as well. We show the utility of our approach on datasets from diverse domains and demonstrate significant gains in accuracy and efficiency.
Visually mining and monitoring massive time series
 In Proceedings of the 10 th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, 2004
"... Moments before the launch of every space vehicle, engineering discipline specialists must make a critical go/nogo decision. The cost of a false positive, allowing a launch in spite of a fault, or a false negative, stopping a potentially successful launch, can be measured in the tens of millions of ..."
Abstract

Cited by 48 (10 self)
 Add to MetaCart
(Show Context)
Moments before the launch of every space vehicle, engineering discipline specialists must make a critical go/nogo decision. The cost of a false positive, allowing a launch in spite of a fault, or a false negative, stopping a potentially successful launch, can be measured in the tens of millions of dollars, not including the cost in morale and other more intangible detriments. The Aerospace Corporation is responsible for providing engineering assessments critical to the go/nogo decision for every Department of Defense space vehicle. These assessments are made by constantly monitoring streaming telemetry data in the hours before launch. We will introduce VizTree, a novel timeseries visualization tool to aid the Aerospace analysts who must make these engineering assessments. VizTree was developed at the University of California, Riverside and is unique in that the same tool is used for mining archival data and monitoring incoming live telemetry. The use of a single tool for both aspects of the task allows a natural and intuitive transfer of mined knowledge to the monitoring task. Our visualization approach works by transforming the time series into a symbolic representation, and encoding the data in a modified suffix tree in which the frequency and other properties of patterns are mapped onto colors and other visual properties. We demonstrate the utility of our system by comparing it with stateoftheart batch algorithms on several real and synthetic datasets.
Time Series Shapelets: A New Primitive for Data Mining
"... Classification of time series has been attracting great interest over the past decade. Recent empirical evidence has strongly suggested that the simple nearest neighbor algorithm is very difficult to beat for most time series problems. While this may be considered good news, given the simplicity of ..."
Abstract

Cited by 48 (7 self)
 Add to MetaCart
(Show Context)
Classification of time series has been attracting great interest over the past decade. Recent empirical evidence has strongly suggested that the simple nearest neighbor algorithm is very difficult to beat for most time series problems. While this may be considered good news, given the simplicity of implementing the nearest neighbor algorithm, there are some negative consequences of this. First, the nearest neighbor algorithm requires storing and searching the entire dataset, resulting in a time and space complexity that limits its applicability, especially on resourcelimited sensors. Second, beyond mere classification accuracy, we often wish to gain some insight into the data. In this work we introduce a new time series primitive, time series shapelets, which addresses these limitations. Informally, shapelets are time series subsequences which are in some sense maximally representative of a class. As we shall show with extensive empirical evaluations in diverse domains, algorithms based on the time series shapelet primitives can be interpretable, more accurate and significantly faster than stateoftheart classifiers.
Timeseries Bitmaps: A Practical Visualization Tool for working with Large Time Series Databases
 In proceedings of SIAM International Conference on Data Mining (SDM '05
"... The increasing interest in time series data mining in the last decade has resulted in the introduction of a variety of similarity measures, representations, and algorithms. Surprisingly, this massive research effort has had little impact on real world applications. Real world practitioners who work ..."
Abstract

Cited by 33 (6 self)
 Add to MetaCart
(Show Context)
The increasing interest in time series data mining in the last decade has resulted in the introduction of a variety of similarity measures, representations, and algorithms. Surprisingly, this massive research effort has had little impact on real world applications. Real world practitioners who work with time series on a daily basis rarely take advantage of the wealth of tools that the data mining community has made available. In this work, we attempt to address this problem by introducing a simple parameterlight tool that allows users to efficiently navigate through large collections of time series. Our system has the unique advantage that it can be embedded directly into any standard graphical user interfaces, such as Microsoft Windows, thus making deployment easier. Our approach extracts features from a time series of arbitrary length and uses information about the relative frequency of its features to color a bitmap in a principled way. By visualizing the similarities and differences within a collection of bitmaps, a user can quickly discover clusters, anomalies, and other regularities within their data collection. We demonstrate the utility of our approach with a set of comprehensive experiments on real datasets from a variety of domains.
The citiKey website. http://www.estreet.com
 IEEE Transactions on Knowledge and Data Engineering (TKDE
"... In many applications that track and analyze spatiotemporal data, movements obey periodic patterns; the objects follow the same routes (approximately) over regular time intervals. For example, people wake up at the same time and follow more or less the same route to their work everyday. The discovery ..."
Abstract

Cited by 25 (0 self)
 Add to MetaCart
In many applications that track and analyze spatiotemporal data, movements obey periodic patterns; the objects follow the same routes (approximately) over regular time intervals. For example, people wake up at the same time and follow more or less the same route to their work everyday. The discovery of hidden periodic patterns in spatiotemporal data could provide unveiling important information to the data analyst. Existing approaches on discovering periodic patterns focus on symbol sequences. However, these methods cannot directly be applied to a spatiotemporal sequence because of the fuzziness of spatial locations in the sequence. In this paper, we define the problem of mining periodic patterns in spatiotemporal data and propose an effective and efficient algorithm for retrieving maximal periodic patterns. In addition, we study two interesting variants of the problem. The first is the retrieval of periodic patterns that are not frequent in the whole history, but during a continuous subinterval of it. The second problem is the discovery of periodic patterns, some instances of which may be shifted or distorted. We demonstrate how our mining technique can be adapted for these variants. Finally, we present a comprehensive experimental evaluation, where we show the effectiveness and efficiency of the proposed techniques.
Online Discovery and Maintenance of Time Series Motifs
"... The detection of repeated subsequences, time series motifs, is a problem which has been shown to have great utility for several higherlevel data mining algorithms, including classification, clustering, segmentation, forecasting, and rule discovery. In recent years there has been significant researc ..."
Abstract

Cited by 22 (4 self)
 Add to MetaCart
(Show Context)
The detection of repeated subsequences, time series motifs, is a problem which has been shown to have great utility for several higherlevel data mining algorithms, including classification, clustering, segmentation, forecasting, and rule discovery. In recent years there has been significant research effort spent on efficiently discovering these motifs in static offline databases. However, for many domains, the inherent streaming nature of time series demands online discovery and maintenance of time series motifs. In this paper, we develop the first online motif discovery algorithm which monitors and maintains motifs exactly in real time over the most recent history of a stream. Our algorithm has a worstcase update time which is linear to the window size and is extendible to maintain more complex pattern structures. In contrast, the current offline algorithms either need significant update time or require very costly preprocessing steps which online algorithms simply cannot afford. Our core ideas allow useful extensions of our algorithm to deal with arbitrary data rates and discovering multidimensional motifs. We demonstrate the utility of our algorithms with a variety of case studies in the domains of robotics, acoustic monitoring and online compression.
Approximations to magic: Finding unusual medical time series
 In 18th IEEE Symp. on ComputerBased Medical Systems (CBMS
, 2005
"... In this work we introduce the new problem of finding time series discords. Time series discords are subsequences of longer time series that are maximally different to all the rest of the time series subsequences. They thus capture the sense of the most unusual subsequence within a time series. While ..."
Abstract

Cited by 21 (1 self)
 Add to MetaCart
(Show Context)
In this work we introduce the new problem of finding time series discords. Time series discords are subsequences of longer time series that are maximally different to all the rest of the time series subsequences. They thus capture the sense of the most unusual subsequence within a time series. While the brute force algorithm to discover time series discords is quadratic in the length of the time series, we show a simple algorithm that is 3 to 4 orders of magnitude faster than brute force, while guaranteed to produce identical results. 1.
Time series knowledge mining
, 2006
"... An important goal of knowledge discovery is the search for patterns in data that can help explain the underlying process that generated the data. The patterns are required to be new, useful, and understandable to humans. In this work we present a new method for the understandable description of loca ..."
Abstract

Cited by 20 (2 self)
 Add to MetaCart
An important goal of knowledge discovery is the search for patterns in data that can help explain the underlying process that generated the data. The patterns are required to be new, useful, and understandable to humans. In this work we present a new method for the understandable description of local temporal relationships in multivariate data, called Time Series Knowledge Mining (TSKM). We define the Time Series Knowledge Representation (TSKR) as a new language for expressing temporal knowledge. The patterns have a hierarchical structure, each level corresponds to a single temporal concept. On the lowest level, intervals are used to represent duration. Overlapping parts of intervals represent coincidence on the next level. Several such blocks of intervals are connected with a partial order relation on the highest level. Each pattern element consists of a semiotic triple to connect syntactic and semantic information with pragmatics. The patterns are very compact, but offer details for each element on demand. In comparison with related approaches, the TSKR is shown to have advantages in robustness, expressivity, and comprehensibility. Efficient algorithms for the discovery of the patterns are proposed. The search for coincidence as well as partial order can be formulated as variants of the well known frequent itemset problem. One of the best known algorithms for this problem is therefore adapted for our purposes. Human interaction is used during the mining to analyze and validate partial results as early as possible and guide further processing steps. The efficacy of the methods is demonstrated using several data sets. In an application to sports medicine the results were recognized as valid and useful by an expert of the field.
Assumptionfree Anomaly Detection in Time Series
 in Proc. of the 17th Intl. Conf. on Scientific and Statistical Database Management (SSDBM), 2005
"... Recent advancements in sensor technology have made it possible to collect enormous amounts of data in real time. However, because of the sheer volume of data most of it will never be inspected by an algorithm, much less a human being. One way to mitigate this problem is to perform some type of anoma ..."
Abstract

Cited by 20 (1 self)
 Add to MetaCart
(Show Context)
Recent advancements in sensor technology have made it possible to collect enormous amounts of data in real time. However, because of the sheer volume of data most of it will never be inspected by an algorithm, much less a human being. One way to mitigate this problem is to perform some type of anomaly (novelty /interestingness/surprisingness) detection and flag unusual patterns for further inspection by humans or more CPU intensive algorithms. Most current solutions are “custom made ” for particular domains, such as ECG monitoring, valve pressure monitoring, etc. This customization requires extensive effort by domain expert. Furthermore, handcrafted systems tend to be very brittle to concept drift. In this demonstration, we will show an online anomaly detection system that does not need to be customized for individual domains, yet performs with exceptionally high precision/recall. The system is based on the recently introduced idea of time series bitmaps. To demonstrate the universality of our system, we will allow testing on independently annotated datasets from domains as diverse as ECGs, Space Shuttle telemetry monitoring, video surveillance, and respiratory data. In addition, we invite attendees to test our system with any dataset available on the web.