Results 1  10
of
607
Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
, 2004
"... Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear m ..."
Abstract

Cited by 1513 (20 self)
 Add to MetaCart
Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear measurements do we need to recover objects from this class to within accuracy ɛ? This paper shows that if the objects of interest are sparse or compressible in the sense that the reordered entries of a signal f ∈ F decay like a powerlaw (or if the coefficient sequence of f in a fixed basis decays like a powerlaw), then it is possible to reconstruct f to within very high accuracy from a small number of random measurements. typical result is as follows: we rearrange the entries of f (or its coefficients in a fixed basis) in decreasing order of magnitude f  (1) ≥ f  (2) ≥... ≥ f  (N), and define the weakℓp ball as the class F of those elements whose entries obey the power decay law f  (n) ≤ C · n −1/p. We take measurements 〈f, Xk〉, k = 1,..., K, where the Xk are Ndimensional Gaussian
A Simple Proof of the Restricted Isometry Property for Random Matrices
 CONSTR APPROX
, 2008
"... We give a simple technique for verifying the Restricted Isometry Property (as introduced by Candès and Tao) for random matrices that underlies Compressed Sensing. Our approach has two main ingredients: (i) concentration inequalities for random inner products that have recently provided algorithmical ..."
Abstract

Cited by 631 (64 self)
 Add to MetaCart
(Show Context)
We give a simple technique for verifying the Restricted Isometry Property (as introduced by Candès and Tao) for random matrices that underlies Compressed Sensing. Our approach has two main ingredients: (i) concentration inequalities for random inner products that have recently provided algorithmically simple proofs of the Johnson–Lindenstrauss lemma; and (ii) covering numbers for finitedimensional balls in Euclidean space. This leads to an elementary proof of the Restricted Isometry Property and brings out connections between Compressed Sensing and the Johnson–Lindenstrauss lemma. As a result, we obtain simple and direct proofs of Kashin’s theorems on widths of finite balls in Euclidean space (and their improvements due to Gluskin) and proofs of the existence of optimal Compressed Sensing measurement matrices. In the process, we also prove that these measurements have a certain universality with respect to the sparsityinducing basis.
The geometry of graphs and some of its algorithmic applications
 COMBINATORICA
, 1995
"... In this paper we explore some implications of viewing graphs as geometric objects. This approach offers a new perspective on a number of graphtheoretic and algorithmic problems. There are several ways to model graphs geometrically and our main concern here is with geometric representations that res ..."
Abstract

Cited by 524 (19 self)
 Add to MetaCart
(Show Context)
In this paper we explore some implications of viewing graphs as geometric objects. This approach offers a new perspective on a number of graphtheoretic and algorithmic problems. There are several ways to model graphs geometrically and our main concern here is with geometric representations that respect the metric of the (possibly weighted) graph. Given a graph G we map its vertices to a normed space in an attempt to (i) Keep down the dimension of the host space and (ii) Guarantee a small distortion, i.e., make sure that distances between vertices in G closely match the distances between their geometric images. In this paper we develop efficient algorithms for embedding graphs lowdimensionally with a small distortion. Further algorithmic applications include: 0 A simple, unified approach to a number of problems on multicommodity flows, including the LeightonRae Theorem [29] and some of its extensions. 0 For graphs embeddable in lowdimensional spaces with a small distortion, we can find lowdiameter decompositions (in the sense of [4] and [34]). The parameters of the decomposition depend only on the dimension and the distortion and not on the size of the graph. 0 In graphs embedded this way, small balanced separators can be found efficiently. Faithful lowdimensional representations of statistical data allow for meaningful and efficient clustering, which is one of the most basic tasks in patternrecognition. For the (mostly heuristic) methods used
Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems
 Journal of the ACM
, 1998
"... Abstract. We present a polynomial time approximation scheme for Euclidean TSP in fixed dimensions. For every fixed c Ͼ 1 and given any n nodes in 2 , a randomized version of the scheme finds a (1 ϩ 1/c)approximation to the optimum traveling salesman tour in O(n(log n) O(c) ) time. When the nodes ..."
Abstract

Cited by 397 (2 self)
 Add to MetaCart
Abstract. We present a polynomial time approximation scheme for Euclidean TSP in fixed dimensions. For every fixed c Ͼ 1 and given any n nodes in 2 , a randomized version of the scheme finds a (1 ϩ 1/c)approximation to the optimum traveling salesman tour in O(n(log n) O(c) ) time. When the nodes are in d , the running time increases to O(n(log n) ). For every fixed c, d the running time is n ⅐ poly(log n), that is nearly linear in n. The algorithm can be derandomized, but this increases the running time by a factor O(n d ). The previous best approximation algorithm for the problem (due to Christofides) achieves a 3/2approximation in polynomial time. We also give similar approximation schemes for some other NPhard Euclidean problems: Minimum Steiner Tree, kTSP, and kMST. (The running times of the algorithm for kTSP and kMST involve an additional multiplicative factor k.) The previous best approximation algorithms for all these problems achieved a constantfactor approximation. We also give efficient approximation schemes for Euclidean MinCost Matching, a problem that can be solved exactly in polynomial time. All our algorithms also work, with almost no modification, when distance is measured using any geometric norm (such as ᐉ p for p Ն 1 or other Minkowski norms). They also have simple parallel (i.e., NC) implementations.
Probabilistic Approximation of Metric Spaces and its Algorithmic Applications
 In 37th Annual Symposium on Foundations of Computer Science
, 1996
"... The goal of approximating metric spaces by more simple metric spaces has led to the notion of graph spanners [PU89, PS89] and to lowdistortion embeddings in lowdimensional spaces [LLR94], having many algorithmic applications. This paper provides a novel technique for the analysis of randomized ..."
Abstract

Cited by 351 (32 self)
 Add to MetaCart
(Show Context)
The goal of approximating metric spaces by more simple metric spaces has led to the notion of graph spanners [PU89, PS89] and to lowdistortion embeddings in lowdimensional spaces [LLR94], having many algorithmic applications. This paper provides a novel technique for the analysis of randomized algorithms for optimization problems on metric spaces, by relating the randomized performance ratio for any metric space to the randomized performance ratio for a set of "simple" metric spaces. We define a notion of a set of metric spaces that probabilisticallyapproximates another metric space. We prove that any metric space can be probabilisticallyapproximated by hierarchically wellseparated trees (HST) with a polylogarithmic distortion. These metric spaces are "simple" as being: (1) tree metrics. (2) natural for applying a divideandconquer algorithmic approach. The technique presented is of particular interest in the context of online computation. A large number of online al...
Finding motifs using random projections
, 2001
"... Pevzner and Sze [23] considered a precise version of the motif discovery problem and simultaneously issued an algorithmic challenge: find a motif Å of length 15, where each planted instance differs from Å in 4 positions. Whereas previous algorithms all failed to solve this (15,4)motif problem, Pevz ..."
Abstract

Cited by 285 (6 self)
 Add to MetaCart
Pevzner and Sze [23] considered a precise version of the motif discovery problem and simultaneously issued an algorithmic challenge: find a motif Å of length 15, where each planted instance differs from Å in 4 positions. Whereas previous algorithms all failed to solve this (15,4)motif problem, Pevzner and Sze introduced algorithms that succeeded. However, their algorithms failed to solve the considerably more difficult (14,4), (16,5), and (18,6)motif problems. We introduce a novel motif discovery algorithm based on the use of random projections of the input’s substrings. Experiments on simulated data demonstrate that this algorithm performs better than existing algorithms and, in particular, typically solves the difficult (14,4), (16,5), and (18,6)motif problems quite efficiently. A probabilistic estimate shows that the small values of � for which the algorithm fails to recover the planted Ð � �motif are in all likelihood inherently impossible to solve. We also present experimental results on realistic biological data by identifying ribosome binding sites in prokaryotes as well as a number of known transcriptional regulatory motifs in eukaryotes. 1. CHALLENGING MOTIF PROBLEMS Pevzner and Sze [23] considered a very precise version of the motif discovery problem of computational biology, which had also been considered by Sagot [26]. Based on this formulation, they issued an algorithmic challenge: Planted Ð � �Motif Problem: Suppose there is a fixed but unknown nucleotide sequence Å (the motif) of length Ð. The problem is to determine Å, givenØ nucleotide sequences each of length Ò, and each containing a planted variant of Å. More precisely, each such planted variant is a substring that is Å with exactly � point substitutions. One instantiation that they labeled “The Challenge Problem ” was parameterized as finding a planted (15,4)motif in Ø � sequences each of length Ò � �. These values of Ò, Ø, andÐ are
On Approximating Arbitrary Metrics by Tree Metrics
 In Proceedings of the 30th Annual ACM Symposium on Theory of Computing
, 1998
"... This paper is concerned with probabilistic approximation of metric spaces. In previous work we introduced the method of ecient approximation of metrics by more simple families of metrics in a probabilistic fashion. In particular we study probabilistic approximations of arbitrary metric spaces by \hi ..."
Abstract

Cited by 266 (14 self)
 Add to MetaCart
(Show Context)
This paper is concerned with probabilistic approximation of metric spaces. In previous work we introduced the method of ecient approximation of metrics by more simple families of metrics in a probabilistic fashion. In particular we study probabilistic approximations of arbitrary metric spaces by \hierarchically wellseparated tree" metric spaces. This has proved as a useful technique for simplifying the solutions to various problems.
FINDING STRUCTURE WITH RANDOMNESS: PROBABILISTIC ALGORITHMS FOR CONSTRUCTING APPROXIMATE MATRIX DECOMPOSITIONS
"... Lowrank matrix approximations, such as the truncated singular value decomposition and the rankrevealing QR decomposition, play a central role in data analysis and scientific computing. This work surveys and extends recent research which demonstrates that randomization offers a powerful tool for ..."
Abstract

Cited by 253 (6 self)
 Add to MetaCart
(Show Context)
Lowrank matrix approximations, such as the truncated singular value decomposition and the rankrevealing QR decomposition, play a central role in data analysis and scientific computing. This work surveys and extends recent research which demonstrates that randomization offers a powerful tool for performing lowrank matrix approximation. These techniques exploit modern computational architectures more fully than classical methods and open the possibility of dealing with truly massive data sets. This paper presents a modular framework for constructing randomized algorithms that compute partial matrix decompositions. These methods use random sampling to identify a subspace that captures most of the action of a matrix. The input matrix is then compressed—either explicitly or implicitly—to this subspace, and the reduced matrix is manipulated deterministically to obtain the desired lowrank factorization. In many cases, this approach beats its classical competitors in terms of accuracy, speed, and robustness. These claims are supported by extensive numerical experiments and a detailed error analysis. The specific benefits of randomized techniques depend on the computational environment. Consider the model problem of finding the k dominant components of the singular value decomposition
Databasefriendly Random Projections
, 2001
"... A classic result of Johnson and Lindenstrauss asserts that any set of n points in ddimensional Euclidean space can be embedded into kdimensional Euclidean space  where k is logarithmic in n and independent of d  so that all pairwise distances are maintained within an arbitrarily small factor. Al ..."
Abstract

Cited by 240 (3 self)
 Add to MetaCart
A classic result of Johnson and Lindenstrauss asserts that any set of n points in ddimensional Euclidean space can be embedded into kdimensional Euclidean space  where k is logarithmic in n and independent of d  so that all pairwise distances are maintained within an arbitrarily small factor. All known constructions of such embeddings involve projecting the n points onto a random kdimensional hyperplane. We give a novel construction of the embedding, suitable for database applications, which amounts to computing a simple aggregate over k random attribute partitions.