Results 11  20
of
626
Efficient, Fair Interpolation using CatmullClark Surfaces
, 1993
"... We describe an efficient method for constructing a smooth surface that interpolates the vertices of a mesh of arbitrary topological type. Normal vectors can also be interpolated at an arbitrary subset of the vertices. The method improves on existing interpolation techniques in that it is fast, robus ..."
Abstract

Cited by 205 (9 self)
 Add to MetaCart
(Show Context)
We describe an efficient method for constructing a smooth surface that interpolates the vertices of a mesh of arbitrary topological type. Normal vectors can also be interpolated at an arbitrary subset of the vertices. The method improves on existing interpolation techniques in that it is fast, robust and general. Our approach is to compute a control mesh whose CatmullClark subdivision surface interpolates the given data and minimizes a smoothness or "fairness" measure of the surface. Following Celniker and Gossard, the norm we use is based on a linear combination of thinplate and membrane energies. Even though CatmullClark surfaces do not possess closedform parametrizations, we show that the relevant properties of the surfaces can be computed efficiently and without approximation. In particular, we show that (1) simple, exact interpolation conditions can be derived, and (2) the fairness norm and its derivatives can be computed exactly, without resort to numerical integration.
Displaced subdivision surfaces
 Siggraph 2000, Computer Graphics Proceedings, Annual Conference Series, pages 85–94. ACM Press / ACM SIGGRAPH
, 2000
"... In this paper we introduce a new surface representation, the displaced subdivision surface. It represents a detailed surface model as a scalarvalued displacement over a smooth domain surface. Our representation defines both the domain surface and the displacement function using a unified subdivisio ..."
Abstract

Cited by 158 (2 self)
 Add to MetaCart
(Show Context)
In this paper we introduce a new surface representation, the displaced subdivision surface. It represents a detailed surface model as a scalarvalued displacement over a smooth domain surface. Our representation defines both the domain surface and the displacement function using a unified subdivision framework, allowing for simple and efficient evaluation of analytic surface properties. We present a simple, automatic scheme for converting detailed geometric models into such a representation. The challenge in this conversion process is to find a simple subdivision surface that still faithfully expresses the detailed model as its offset. We demonstrate that displaced subdivision surfaces offer a number of benefits, including geometry compression, editing, animation, scalability, and adaptive rendering. In particular, the encoding of fine detail as a scalar function makes the representation extremely compact. Additional Keywords: geometry compression, multiresolution geometry, displacement maps, bump maps, multiresolution editing, animation.
Interpolatory Subdivision on Open Quadrilateral Nets with Arbitrary Topology
 Computer Graphics Forum
, 1996
"... A simple interpolatory subdivision scheme for quadrilateral nets with arbitrary topology is presented which generates C 1 surfaces in the limit. The scheme satisfies important requirements for practical applications in computer graphics and engineering. These requirements include the necessity to ..."
Abstract

Cited by 154 (10 self)
 Add to MetaCart
(Show Context)
A simple interpolatory subdivision scheme for quadrilateral nets with arbitrary topology is presented which generates C 1 surfaces in the limit. The scheme satisfies important requirements for practical applications in computer graphics and engineering. These requirements include the necessity to generate smooth surfaces with local creases and cusps. The scheme can be applied to open nets in which case it generates boundary curves that allow a C 0 join of several subdivision patches. Due to the local support of the scheme, adaptive refinement strategies can be applied. We present a simple device to preserve the consistency of such adaptively refined nets. Keywords: Curve and surface modeling, Interpolatory subdivision, Adaptive meshrefinement 1 Introduction The problem we address in this paper is the generation of smooth interpolating surfaces of arbitrary topological type in the context of practical applications. Such applications range from the design of freeform surfaces an...
CHARMS: A Simple Framework for Adaptive Simulation
 ACM Transactions on Graphics
, 2002
"... Finite element solvers are a basic component of simulation applications; they are common in computer graphics, engineering, and medical simulations. Although adaptive solvers can be of great value in reducing the often high computational cost of simulations they are not employed broadly. Indeed, bui ..."
Abstract

Cited by 146 (11 self)
 Add to MetaCart
Finite element solvers are a basic component of simulation applications; they are common in computer graphics, engineering, and medical simulations. Although adaptive solvers can be of great value in reducing the often high computational cost of simulations they are not employed broadly. Indeed, building adaptive solvers can be a daunting task especially for 3D finite elements. In this paper we are introducing a new approach to produce conforming, hierarchical, adaptive refinement methods (CHARMS). The basic principle of our approach is to refine basis functions, not elements. This removes a number of implementation headaches associated with other approaches and is a general technique independent of domain dimension (here 2D and 3D), element type (e.g., triangle, quad, tetrahedron, hexahedron), and basis function order (piecewise linear, higher order Bsplines, Loop subdivision, etc.). The (un)refinement algorithms are simple and require little in terms of data structure support. We demonstrate the versatility of our new approach through 2D and 3D examples, including medical applications and thinshell animations.
Progressive Forest Split Compression
, 1998
"... In this paper we introduce the Progressive Forest Split (PFS) representation, a new adaptive refinement scheme for storing and transmitting manifold triangular meshes in progressive and highly compressed form. As in the Progressive Mesh (PM) method of Hoppe, a triangular mesh is represented as a low ..."
Abstract

Cited by 143 (9 self)
 Add to MetaCart
In this paper we introduce the Progressive Forest Split (PFS) representation, a new adaptive refinement scheme for storing and transmitting manifold triangular meshes in progressive and highly compressed form. As in the Progressive Mesh (PM) method of Hoppe, a triangular mesh is represented as a low resolution polygonal model followed by a sequence of refinement operations, each one specifying how to add triangles and vertices to the previous level of detail to obtain a new level. The PFS format shares with PM and other refinement schemes the ability to smoothly interpolate between consecutive levels of detail. However, it achieves much higher compression ratios than PM by using a more complex refinement operation which can, at the expense of reduced granularity, be encoded more efficiently. A forest split operation doubling the number n of triangles of a mesh requires a maximum of approximately 3:5n bits to represent the connectivity changes, as opposed to approximately #5 + log 2 #n## n bits in PM. We describe
√3subdivision
 IN PROCEEDINGS OF ACM SIGGRAPH
, 2000
"... A new stationary subdivision scheme is presented which performs slower topological refinement than the usual dyadic split operation. The number of triangles increases in every step by a factor of 3 instead of 4. Applying the subdivision operator twice causes a uniform refinement with trisection of ..."
Abstract

Cited by 138 (4 self)
 Add to MetaCart
A new stationary subdivision scheme is presented which performs slower topological refinement than the usual dyadic split operation. The number of triangles increases in every step by a factor of 3 instead of 4. Applying the subdivision operator twice causes a uniform refinement with trisection of every original edge (hence the name 3subdivision) while two dyadic splits would quadsect every original edge. Besides the finer gradation of the hierarchy levels, the new scheme has several important properties: The stencils for the subdivision rules have minimum size and maximum symmetry. The smoothness of the limit surface is C2 everywhere except for the extraordinary points where it is C1. The convergence analysis of the scheme is presented based on a new general technique which also applies to the analysis of other subdivision schemes. The new splitting operation enables locally adaptive refinement under builtin preservation of the mesh consistency without temporary crackfixing between neighboring faces from different refinement levels. The size of the surrounding mesh area which is affected by selective refinement is smaller than for the dyadic split operation. We further present a simple extension of the new subdivision scheme which makes it applicable to meshes with boundary and allows us to generate sharp feature lines.
Subdivision Surfaces: A New Paradigm For ThinShell FiniteElement Analysis
 INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
, 2000
"... We develop a new paradigm for thinshell finiteelement analysis based on the use of subdivision surfaces for: i) describing the geometry of the shell in its undeformed configuration, and ii) generating smooth interpolated displacement fields possessing bounded energy within the strict framework ..."
Abstract

Cited by 133 (30 self)
 Add to MetaCart
(Show Context)
We develop a new paradigm for thinshell finiteelement analysis based on the use of subdivision surfaces for: i) describing the geometry of the shell in its undeformed configuration, and ii) generating smooth interpolated displacement fields possessing bounded energy within the strict framework of the KirchhoffLove theory of thin shells. The particular subdivision strategy adopted here is Loop's scheme, with extensions such as required to account for creases and displacement boundary conditions. The displacement fields obtained by subdivision are H 2 and, consequently, have a finite KirchhoffLove energy. The resulting finite elements contain three nodes and element integrals are computed by a onepoint quadrature. The displacement field of the shell is interpolated from nodal displacements only. In particular, no nodal rotations are used in the interpolation. The interpolation scheme induced by subdivision is nonlocal, i. e., the displacement field over one element depend on the nodal displacements of the element nodes and all nodes of immediately neighboring elements. However, the use of subdivision surfaces ensures that all the local displacement fields thus constructed combine conformingly to define one single limit surface.
EigenSkin: Real Time Large Deformation Character Skinning in Hardware
 In ACM SIGGRAPH Symposium on Computer Animation
, 2002
"... We present a technique which allows subtle nonlinear quasistatic deformations of articulated characters to be compactly approximated by datadependent eigenbases which are optimized for real time rendering on commodity graphics hardware. The method extends the common SkeletalSubspace Deformation ( ..."
Abstract

Cited by 116 (6 self)
 Add to MetaCart
We present a technique which allows subtle nonlinear quasistatic deformations of articulated characters to be compactly approximated by datadependent eigenbases which are optimized for real time rendering on commodity graphics hardware. The method extends the common SkeletalSubspace Deformation (SSD) technique to provide efficient approximations of the complex deformation behaviours exhibited in simulated, measured, and artistdrawn characters. Instead of storing displacements for key poses (which may be numerous), we precompute principal components of the deformation influences for individual kinematic joints, and so construct erroroptimal eigenbases describing each joint's deformation subspace. Posedependent deformations are then expressed in terms of these reduced eigenbases, allowing precomputed coefficients of the eigenbasis to be interpolated at run time. Vertex program hardware can then efficiently render nonlinear skin deformations using a small number of eigendisplacements stored in graphics hardware. We refer to the final resulting character skinning construct as the model's EigenSkin. Animation results are presented for a very large nonlinear finite element model of a human hand rendered in real time at minimal cost to the main CPU.
Piecewise Smooth Subdivision Surfaces with Normal Control
"... In this paper we introduce improved rules for CatmullClark and Loop subdivision that overcome several problems with the original schemes, namely, lack of smoothness at extraordinary boundary vertices and folds near concave corners. In addition, our approach to rule modification allows the generatio ..."
Abstract

Cited by 109 (11 self)
 Add to MetaCart
In this paper we introduce improved rules for CatmullClark and Loop subdivision that overcome several problems with the original schemes, namely, lack of smoothness at extraordinary boundary vertices and folds near concave corners. In addition, our approach to rule modification allows the generation of surfaces with prescribed normals, both on the boundary and in the interior, which considerably improves control of the shape of surfaces.