Results 1  10
of
205
A Signal Processing Approach To Fair Surface Design
, 1995
"... In this paper we describe a new tool for interactive freeform fair surface design. By generalizing classical discrete Fourier analysis to twodimensional discrete surface signals  functions defined on polyhedral surfaces of arbitrary topology , we reduce the problem of surface smoothing, or fai ..."
Abstract

Cited by 654 (15 self)
 Add to MetaCart
In this paper we describe a new tool for interactive freeform fair surface design. By generalizing classical discrete Fourier analysis to twodimensional discrete surface signals  functions defined on polyhedral surfaces of arbitrary topology , we reduce the problem of surface smoothing, or fairing, to lowpass filtering. We describe a very simple surface signal lowpass filter algorithm that applies to surfaces of arbitrary topology. As opposed to other existing optimizationbased fairing methods, which are computationally more expensive, this is a linear time and space complexity algorithm. With this algorithm, fairing very large surfaces, such as those obtained from volumetric medical data, becomes affordable. By combining this algorithm with surface subdivision methods we obtain a very effective fair surface design technique. We then extend the analysis, and modify the algorithm accordingly, to accommodate different types of constraints. Some constraints can be imposed without any modification of the algorithm, while others require the solution of a small associated linear system of equations. In particular, vertex location constraints, vertex normal constraints, and surface normal discontinuities across curves embedded in the surface, can be imposed with this technique.
Multiresolution Analysis for Surfaces Of Arbitrary . . .
, 1993
"... Multiresolution analysis provides a useful and efficient tool for representing shape and analyzing features at multiple levels of detail. Although the technique has met with considerable success when applied to univariate functions, images, and more generally to functions defined on lR , to our k ..."
Abstract

Cited by 389 (3 self)
 Add to MetaCart
Multiresolution analysis provides a useful and efficient tool for representing shape and analyzing features at multiple levels of detail. Although the technique has met with considerable success when applied to univariate functions, images, and more generally to functions defined on lR , to our knowledge it has not been extended to functions defined on surfaces of arbitrary genus. In this
Geometry images
 IN PROC. 29TH SIGGRAPH
, 2002
"... Surface geometry is often modeled with irregular triangle meshes. The process of remeshing refers to approximating such geometry using a mesh with (semi)regular connectivity, which has advantages for many graphics applications. However, current techniques for remeshing arbitrary surfaces create onl ..."
Abstract

Cited by 342 (24 self)
 Add to MetaCart
Surface geometry is often modeled with irregular triangle meshes. The process of remeshing refers to approximating such geometry using a mesh with (semi)regular connectivity, which has advantages for many graphics applications. However, current techniques for remeshing arbitrary surfaces create only semiregular meshes. The original mesh is typically decomposed into a set of disklike charts, onto which the geometry is parametrized and sampled. In this paper, we propose to remesh an arbitrary surface onto a completely regular structure we call a geometry image. It captures geometry as a simple 2D array of quantized points. Surface signals like normals and colors are stored in similar 2D arrays using the same implicit surface parametrization — texture coordinates are absent. To create a geometry image, we cut an arbitrary mesh along a network of edge paths, and parametrize the resulting single chart onto a square. Geometry images can be encoded using traditional image compression algorithms, such as waveletbased coders.
Piecewise smooth surface reconstruction
, 1994
"... We present a general method for automatic reconstruction of accurate, concise, piecewise smooth surface models from scattered range data. The method can be used in a variety of applications such as reverse engineering — the automatic generation of CAD models from physical objects. Novel aspects of t ..."
Abstract

Cited by 303 (13 self)
 Add to MetaCart
We present a general method for automatic reconstruction of accurate, concise, piecewise smooth surface models from scattered range data. The method can be used in a variety of applications such as reverse engineering — the automatic generation of CAD models from physical objects. Novel aspects of the method are its ability to model surfaces of arbitrary topological type and to recover sharp features such as creases and corners. The method has proven to be effective, as demonstrated by a number of examples using both simulated and real data. A key ingredient in the method, and a principal contribution of this paper, is the introduction of a new class of piecewise smooth surface representations based on subdivision. These surfaces have a number of properties that make them ideal for use in surface reconstruction: they are simple to implement, they can model sharp features concisely, and they can be fit to scattered range data using an unconstrained optimization procedure.
Fitting Smooth Surfaces to Dense Polygon Meshes
 Proceedings of SIGGRAPH 96
, 1996
"... Recent progress in acquiring shape from range data permits the acquisition of seamless millionpolygon meshes from physical models. In this paper, we present an algorithm and system for converting dense irregular polygon meshes of arbitrary topology into tensor product Bspline surface patches with ..."
Abstract

Cited by 240 (5 self)
 Add to MetaCart
Recent progress in acquiring shape from range data permits the acquisition of seamless millionpolygon meshes from physical models. In this paper, we present an algorithm and system for converting dense irregular polygon meshes of arbitrary topology into tensor product Bspline surface patches with accompanying displacement maps. This choice of representation yields a coarse but efficient model suitable for animation and a fine but more expensive model suitable for rendering. The first step in our process consists of interactively painting patch boundaries over a rendering of the mesh. In many applications, interactive placement of patch boundaries is considered part of the creative process and is not amenable to automation. The next step is gridded resampling of eachboundedsection of the mesh. Our resampling algorithm lays a grid of springs acrossthe polygonmesh, then iterates between relaxing this grid and subdividing it. This grid provides a parameterization for the mesh section, w...
Interpolating Subdivision for Meshes with Arbitrary Topology
"... Subdivision is a powerful paradigm for the generation of surfaces of arbitrary topology. Given an initial triangular mesh the goal is to produce a smooth and visually pleasing surface whose shape is controlled by the initial mesh. Of particular interest are interpolating schemes since they match the ..."
Abstract

Cited by 236 (24 self)
 Add to MetaCart
(Show Context)
Subdivision is a powerful paradigm for the generation of surfaces of arbitrary topology. Given an initial triangular mesh the goal is to produce a smooth and visually pleasing surface whose shape is controlled by the initial mesh. Of particular interest are interpolating schemes since they match the original data exactly, and play an important role in fast multiresolution and wavelet techniques. Dyn, Gregory, and Levin introduced the Butterfly scheme, which yields C 1 surfaces in the topologically regular setting. Unfortunately it exhibits undesirable artifacts in the case of an irregular topology. We examine these failures and derive an improved scheme, which retains the simplicity of the Butterfly scheme, is interpolating, and results in smoother surfaces.
Subdivision surfaces in character animation
 In Proceedings of the 25th annual conference on Computer graphics and interactive techniques, SIGGRAPH ’98
, 1998
"... The creation of believable and endearing characters in computer graphics presents a number of technical challenges, including the modeling, animation and rendering of complex shapes such as heads, hands, and clothing. Traditionally, these shapes have been modeled with NURBS surfaces despite the seve ..."
Abstract

Cited by 233 (1 self)
 Add to MetaCart
(Show Context)
The creation of believable and endearing characters in computer graphics presents a number of technical challenges, including the modeling, animation and rendering of complex shapes such as heads, hands, and clothing. Traditionally, these shapes have been modeled with NURBS surfaces despite the severe topological restrictions that NURBS impose. In order to move beyond these restrictions, we have recently introduced subdivision surfaces into our production environment. Subdivision surfaces are not new, but their use in highend CG production has been limited. Here we describe a series of developments that were required in order for subdivision surfaces to meet the demands of highend production. First, we devised a practical technique for constructing provably smooth variableradius fillets and blends. Second, we developed methods for using subdivision surfaces in clothing simulation including a new algorithm for efficient collision detection. Third, we developed a method for constructing smooth scalar fields on subdivision surfaces, thereby enabling the use of a wider class of programmable shaders. These developments, which were used extensively in our recently completed short film Geri’s game, have become a highly valued feature of our production environment.
Exact Evaluation Of CatmullClark Subdivision Surfaces At Arbitrary Parameter Values
 Proceedings of SIGGRAPH
, 1998
"... In this paper we disprove the belief widespread within the computer graphics community that CatmullClark subdivision surfaces cannot be evaluated directly without explicitly subdividing. We show that the surface and all its derivatives can be evaluated in terms of a set of eigenbasis functions whi ..."
Abstract

Cited by 225 (8 self)
 Add to MetaCart
In this paper we disprove the belief widespread within the computer graphics community that CatmullClark subdivision surfaces cannot be evaluated directly without explicitly subdividing. We show that the surface and all its derivatives can be evaluated in terms of a set of eigenbasis functions which depend only on the subdivision scheme and we derive analytical expressions for these basis functions. In particular, on the regular part of the control mesh where CatmullClark surfaces are bicubic Bsplines, the eigenbasis is equal to the power basis. Also, our technique is both efficient and easy to implement. We have used our implementation to compute high quality curvature plots of subdivision surfaces. The cost of our evaluation scheme is comparable to that of a bicubic spline. Therefore, our method allows many algorithms developed for parametric surfaces to be applied to CatmullClark subdivision surfaces. This makes subdivision surfaces an even more attractive tool for freeform surface modeling. 1
CHARMS: A Simple Framework for Adaptive Simulation
 ACM Transactions on Graphics
, 2002
"... Finite element solvers are a basic component of simulation applications; they are common in computer graphics, engineering, and medical simulations. Although adaptive solvers can be of great value in reducing the often high computational cost of simulations they are not employed broadly. Indeed, bui ..."
Abstract

Cited by 146 (11 self)
 Add to MetaCart
Finite element solvers are a basic component of simulation applications; they are common in computer graphics, engineering, and medical simulations. Although adaptive solvers can be of great value in reducing the often high computational cost of simulations they are not employed broadly. Indeed, building adaptive solvers can be a daunting task especially for 3D finite elements. In this paper we are introducing a new approach to produce conforming, hierarchical, adaptive refinement methods (CHARMS). The basic principle of our approach is to refine basis functions, not elements. This removes a number of implementation headaches associated with other approaches and is a general technique independent of domain dimension (here 2D and 3D), element type (e.g., triangle, quad, tetrahedron, hexahedron), and basis function order (piecewise linear, higher order Bsplines, Loop subdivision, etc.). The (un)refinement algorithms are simple and require little in terms of data structure support. We demonstrate the versatility of our new approach through 2D and 3D examples, including medical applications and thinshell animations.