Results 1  10
of
537
The Convex Geometry of Linear Inverse Problems
, 2010
"... In applications throughout science and engineering one is often faced with the challenge of solving an illposed inverse problem, where the number of available measurements is smaller than the dimension of the model to be estimated. However in many practical situations of interest, models are constr ..."
Abstract

Cited by 181 (18 self)
 Add to MetaCart
In applications throughout science and engineering one is often faced with the challenge of solving an illposed inverse problem, where the number of available measurements is smaller than the dimension of the model to be estimated. However in many practical situations of interest, models are constrained structurally so that they only have a few degrees of freedom relative to their ambient dimension. This paper provides a general framework to convert notions of simplicity into convex penalty functions, resulting in convex optimization solutions to linear, underdetermined inverse problems. The class of simple models considered are those formed as the sum of a few atoms from some (possibly infinite) elementary atomic set; examples include wellstudied cases such as sparse vectors (e.g., signal processing, statistics) and lowrank matrices (e.g., control, statistics), as well as several others including sums of a few permutations matrices (e.g., ranked elections, multiobject tracking), lowrank tensors (e.g., computer vision, neuroscience), orthogonal matrices (e.g., machine learning), and atomic measures (e.g., system identification). The convex programming formulation is based on minimizing the norm induced by the convex hull of the atomic set; this norm is referred to as the atomic norm. The facial
RASL: Robust Alignment by Sparse and Lowrank Decomposition for Linearly Correlated Images ∗
"... This paper studies the problem of simultaneously aligning a batch of linearly correlated images despite gross corruption (such as occlusion). Our method seeks an optimal set of image domain transformations such that the matrix of transformed images can be decomposed as the sum of a sparse matrix of ..."
Abstract

Cited by 158 (6 self)
 Add to MetaCart
(Show Context)
This paper studies the problem of simultaneously aligning a batch of linearly correlated images despite gross corruption (such as occlusion). Our method seeks an optimal set of image domain transformations such that the matrix of transformed images can be decomposed as the sum of a sparse matrix of errors and a lowrank matrix of recovered aligned images. We reduce this extremely challenging optimization problem to a sequence of convex programs that minimize the sum of ℓ1norm and nuclear norm of the two component matrices, which can be efficiently solved by scalable convex optimization techniques with guaranteed fast convergence. We verify the efficacy of the proposed robust alignment algorithm with extensive experiments with both controlled and uncontrolled real data, demonstrating higher accuracy and efficiency than existing methods over a wide range of realistic misalignments and corruptions. 1.
Robust Subspace Segmentation by LowRank Representation
"... We propose lowrank representation (LRR) to segment data drawn from a union of multiple linear (or affine) subspaces. Given a set of data vectors, LRR seeks the lowestrank representation among all the candidates that represent all vectors as the linear combination of the bases in a dictionary. Unlik ..."
Abstract

Cited by 138 (24 self)
 Add to MetaCart
(Show Context)
We propose lowrank representation (LRR) to segment data drawn from a union of multiple linear (or affine) subspaces. Given a set of data vectors, LRR seeks the lowestrank representation among all the candidates that represent all vectors as the linear combination of the bases in a dictionary. Unlike the wellknown sparse representation (SR), which computes the sparsest representation of each data vector individually, LRR aims at finding the lowestrank representation of a collection of vectors jointly. LRR better captures the global structure of data, giving a more effective tool for robust subspace segmentation from corrupted data. Both theoretical and experimental results show that LRR is a promising tool for subspace segmentation. 1.
Robust Recovery of Subspace Structures by LowRank Representation
"... In this work we address the subspace recovery problem. Given a set of data samples (vectors) approximately drawn from a union of multiple subspaces, our goal is to segment the samples into their respective subspaces and correct the possible errors as well. To this end, we propose a novel method ter ..."
Abstract

Cited by 119 (25 self)
 Add to MetaCart
(Show Context)
In this work we address the subspace recovery problem. Given a set of data samples (vectors) approximately drawn from a union of multiple subspaces, our goal is to segment the samples into their respective subspaces and correct the possible errors as well. To this end, we propose a novel method termed LowRank Representation (LRR), which seeks the lowestrank representation among all the candidates that can represent the data samples as linear combinations of the bases in a given dictionary. It is shown that LRR well solves the subspace recovery problem: when the data is clean, we prove that LRR exactly captures the true subspace structures; for the data contaminated by outliers, we prove that under certain conditions LRR can exactly recover the row space of the original data and detect the outlier as well; for the data corrupted by arbitrary errors, LRR can also approximately recover the row space with theoretical guarantees. Since the subspace membership is provably determined by the row space, these further imply that LRR can perform robust subspace segmentation and error correction, in an efficient way.
Theory and applications of Robust Optimization
, 2007
"... In this paper we survey the primary research, both theoretical and applied, in the field of Robust Optimization (RO). Our focus will be on the computational attractiveness of RO approaches, as well as the modeling power and broad applicability of the methodology. In addition to surveying the most pr ..."
Abstract

Cited by 100 (14 self)
 Add to MetaCart
(Show Context)
In this paper we survey the primary research, both theoretical and applied, in the field of Robust Optimization (RO). Our focus will be on the computational attractiveness of RO approaches, as well as the modeling power and broad applicability of the methodology. In addition to surveying the most prominent theoretical results of RO over the past decade, we will also present some recent results linking RO to adaptable models for multistage decisionmaking problems. Finally, we will highlight successful applications of RO across a wide spectrum of domains, including, but not limited to, finance, statistics, learning, and engineering.
Stable principal component pursuit
 In Proc. of International Symposium on Information Theory
, 2010
"... We consider the problem of recovering a target matrix that is a superposition of lowrank and sparse components, from a small set of linear measurements. This problem arises in compressed sensing of structured highdimensional signals such as videos and hyperspectral images, as well as in the analys ..."
Abstract

Cited by 94 (3 self)
 Add to MetaCart
(Show Context)
We consider the problem of recovering a target matrix that is a superposition of lowrank and sparse components, from a small set of linear measurements. This problem arises in compressed sensing of structured highdimensional signals such as videos and hyperspectral images, as well as in the analysis of transformation invariant lowrank structure recovery. We analyze the performance of the natural convex heuristic for solving this problem, under the assumption that measurements are chosen uniformly at random. We prove that this heuristic exactly recovers lowrank and sparse terms, provided the number of observations exceeds the number of intrinsic degrees of freedom of the component signals by a polylogarithmic factor. Our analysis introduces several ideas that may be of independent interest for the more general problem of compressed sensing and decomposing superpositions of multiple structured signals. 1
Latent Variable Graphical Model Selection via Convex Optimization
, 2010
"... Suppose we have samples of a subset of a collection of random variables. No additional information is provided about the number of latent variables, nor of the relationship between the latent and observed variables. Is it possible to discover the number of hidden components, and to learn a statistic ..."
Abstract

Cited by 75 (5 self)
 Add to MetaCart
Suppose we have samples of a subset of a collection of random variables. No additional information is provided about the number of latent variables, nor of the relationship between the latent and observed variables. Is it possible to discover the number of hidden components, and to learn a statistical model over the entire collection of variables? We address this question in the setting in which the latent and observed variables are jointly Gaussian, with the conditional statistics of the observed variables conditioned on the latent variables being specified by a graphical model. As a first step we give natural conditions under which such latentvariable Gaussian graphical models are identifiable given marginal statistics of only the observed variables. Essentially these conditions require that the conditional graphical model among the observed variables is sparse, while the effect of the latent variables is “spread out ” over most of the observed variables. Next we propose a tractable convex program based on regularized maximumlikelihood for model selection in this latentvariable setting; the regularizer uses both the ℓ1 norm and the nuclear norm. Our modeling framework can be viewed as a combination of dimensionality reduction (to identify latent variables) and graphical modeling (to capture remaining statistical structure not attributable to the latent variables), and it consistently estimates both the number of hidden components and the conditional graphical model structure among the observed variables. These results are applicable in the highdimensional setting in which the number of latent/observed variables grows with the number of samples of the observed variables. The geometric properties of the algebraic varieties of sparse matrices and of lowrank matrices play an important role in our analysis.
Tight Oracle Bounds for Lowrank Matrix Recovery from a Minimal Number of Random Measurements
, 2009
"... This paper presents several novel theoretical results regarding the recovery of a lowrank matrix from just a few measurements consisting of linear combinations of the matrix entries. We showthatproperlyconstrainednuclearnormminimizationstablyrecoversalowrankmatrix from a constant number of noisy ..."
Abstract

Cited by 64 (3 self)
 Add to MetaCart
This paper presents several novel theoretical results regarding the recovery of a lowrank matrix from just a few measurements consisting of linear combinations of the matrix entries. We showthatproperlyconstrainednuclearnormminimizationstablyrecoversalowrankmatrix from a constant number of noisy measurements per degree of freedom; this seems to be the first result of this nature. Further, the recovery error from noisy data is within a constant of three targets: 1) the minimax risk, 2) an ‘oracle ’ error that would be available if the column space of the matrix were known, and 3) a more adaptive ‘oracle ’ error which would be available with the knowledge of the column space corresponding to the part of the matrix that stands above the noise. Lastly, the error bounds regarding lowrank matrices are extended to provide an error bound when the matrix has full rank with decaying singular values. The analysis in this paper is based on the restricted isometry property (RIP) introduced in [6] for vectors, and in [22] for matrices.
Noisy matrix decomposition via convexrelaxation: Optimal rates in high dimensions
 Annals of Statistics,40(2):1171
"... We analyze a class of estimators based on convex relaxation for solving highdimensional matrix decomposition problems. The observations are noisy realizations of a linear transformation X of the sum of an (approximately) low rank matrix � ⋆ with a second matrix Ɣ ⋆ endowed with a complementary for ..."
Abstract

Cited by 63 (11 self)
 Add to MetaCart
We analyze a class of estimators based on convex relaxation for solving highdimensional matrix decomposition problems. The observations are noisy realizations of a linear transformation X of the sum of an (approximately) low rank matrix � ⋆ with a second matrix Ɣ ⋆ endowed with a complementary form of lowdimensional structure; this setup includes many statistical models of interest, including factor analysis, multitask regression and robust covariance estimation. We derive a general theorem that bounds the Frobenius norm error for an estimate of the pair ( � ⋆,Ɣ ⋆ ) obtained by solving a convex optimization problem that combines the nuclear norm with a general decomposable regularizer. Our results use a “spikiness ” condition that is related to, but milder than, singular vector incoherence. We specialize our general result to two cases that have been studied in past work: low rank plus an entrywise sparse matrix, and low rank plus a columnwise sparse matrix. For both models, our theory yields nonasymptotic Frobenius error bounds for both deterministic and stochastic noise matrices, and applies to matrices � ⋆ that can be exactly or approximately low rank, and matrices Ɣ ⋆ that can be exactly or approximately sparse. Moreover, for the case of stochastic noise matrices and the identity observation operator, we establish matching lower bounds on the minimax error. The sharpness of our nonasymptotic predictions is confirmed by numerical simulations. 1. Introduction. The
Linearized Alternating Direction Method with Adaptive Penalty for LowRank Representation
"... Many machine learning and signal processing problems can be formulated as linearly constrained convex programs, which could be efficiently solved by the alternating direction method (ADM). However, usually the subproblems in ADM are easily solvable only when the linear mappings in the constraints ar ..."
Abstract

Cited by 53 (8 self)
 Add to MetaCart
(Show Context)
Many machine learning and signal processing problems can be formulated as linearly constrained convex programs, which could be efficiently solved by the alternating direction method (ADM). However, usually the subproblems in ADM are easily solvable only when the linear mappings in the constraints are identities. To address this issue, we propose a linearized ADM (LADM) method by linearizing the quadratic penalty term and adding a proximal term when solving the subproblems. For fast convergence, we also allow the penalty to change adaptively according a novel update rule. We prove the global convergence of LADM with adaptive penalty (LADMAP). As an example, we apply LADMAP to solve lowrank representation (LRR), which is an important subspace clustering technique yet suffers from high computation cost. By combining LADMAP with a skinny SVD representation technique, we are able to reduce the complexity O(n 3) of the original ADM based method to O(rn 2), where r and n are the rank and size of the representation matrix, respectively, hence making LRR possible for large scale applications. Numerical experiments verify that for LRR our LADMAP based methods are much faster than stateoftheart algorithms. 1