Results 1  10
of
743
Modeling and simulation of genetic regulatory systems: A literature review
 JOURNAL OF COMPUTATIONAL BIOLOGY
, 2002
"... In order to understand the functioning of organisms on the molecular level, we need to know which genes are expressed, when and where in the organism, and to which extent. The regulation of gene expression is achieved through genetic regulatory systems structured by networks of interactions between ..."
Abstract

Cited by 736 (14 self)
 Add to MetaCart
(Show Context)
In order to understand the functioning of organisms on the molecular level, we need to know which genes are expressed, when and where in the organism, and to which extent. The regulation of gene expression is achieved through genetic regulatory systems structured by networks of interactions between DNA, RNA, proteins, and small molecules. As most genetic regulatory networks of interest involve many components connected through interlocking positive and negative feedback loops, an intuitive understanding of their dynamics is hard to obtain. As a consequence, formal methods and computer tools for the modeling and simulation of genetic regulatory networks will be indispensable. This paper reviews formalisms that have been employed in mathematical biology and bioinformatics to describe genetic regulatory systems, in particular directed graphs, Bayesian networks, Boolean networks and their generalizations, ordinary and partial differential equations, qualitative differential equations, stochastic equations, and rulebased formalisms. In addition, the paper discusses how these formalisms have been used in the simulation of the behavior of actual regulatory systems.
Support Vector Machine Classification and Validation of Cancer Tissue Samples Using Microarray Expression Data
, 2000
"... Motivation: DNA microarray experiments generating thousands of gene expression measurements, are being used to gather information from tissue and cell samples regarding gene expression differences that will be useful in diagnosing disease. We have developed a new method to analyse this kind of data ..."
Abstract

Cited by 570 (1 self)
 Add to MetaCart
Motivation: DNA microarray experiments generating thousands of gene expression measurements, are being used to gather information from tissue and cell samples regarding gene expression differences that will be useful in diagnosing disease. We have developed a new method to analyse this kind of data using support vector machines (SVMs). This analysis consists of both classification of the tissue samples, and an exploration of the data for mislabeled or questionable tissue results. Results: We demonstrate the method in detail on samples consisting of ovarian cancer tissues, normal ovarian tissues, and other normal tissues. The dataset consists of expression experiment results for 97 802 cDNAs for each tissue. As a result of computational analysis, a tissue sample is discovered and confirmed to be wrongly labeled. Upon correction of this mistake and the removal of an outlier, perfect classification of tissues is achieved, but not with high confidence. We identify and analyse a subset of genes from the ovarian dataset whose expression is highly differentiated between the types of tissues. To show robustness of the SVM method, two previously published datasets from other types of tissues or cells are analysed. The results are comparable to those previously obtained. We show that other machine learning methods also perform comparably to the SVM on many of those datasets. Availability: The SVM software is available at http:// www. cs.columbia.edu/#bgrundy/svm. Contact: booch@cse.ucsc.edu
Survey of clustering algorithms
 IEEE TRANSACTIONS ON NEURAL NETWORKS
, 2005
"... Data analysis plays an indispensable role for understanding various phenomena. Cluster analysis, primitive exploration with little or no prior knowledge, consists of research developed across a wide variety of communities. The diversity, on one hand, equips us with many tools. On the other hand, the ..."
Abstract

Cited by 501 (4 self)
 Add to MetaCart
(Show Context)
Data analysis plays an indispensable role for understanding various phenomena. Cluster analysis, primitive exploration with little or no prior knowledge, consists of research developed across a wide variety of communities. The diversity, on one hand, equips us with many tools. On the other hand, the profusion of options causes confusion. We survey clustering algorithms for data sets appearing in statistics, computer science, and machine learning, and illustrate their applications in some benchmark data sets, the traveling salesman problem, and bioinformatics, a new field attracting intensive efforts. Several tightly related topics, proximity measure, and cluster validation, are also discussed.
A Bayesian Framework for the Analysis of Microarray Expression Data: Regularized tTest and Statistical Inferences of Gene Changes
 Bioinformatics
, 2001
"... Motivation: DNA microarrays are now capable of providing genomewide patterns of gene expression across many different conditions. The first level of analysis of these patterns requires determining whether observed differences in expression are significant or not. Current methods are unsatisfactory ..."
Abstract

Cited by 491 (6 self)
 Add to MetaCart
(Show Context)
Motivation: DNA microarrays are now capable of providing genomewide patterns of gene expression across many different conditions. The first level of analysis of these patterns requires determining whether observed differences in expression are significant or not. Current methods are unsatisfactory due to the lack of a systematic framework that can accommodate noise, variability, and low replication often typical of microarray data. Results: We develop a Bayesian probabilistic framework for microarray data analysis. At the simplest level, we model logexpression values by independent normal distributions, parameterized by corresponding means and variances with hierarchical prior distributions. We derive point estimates for both parameters and hyperparameters, and regularized expressions for the variance of each gene by combining the empirical variance with a local background variance associated with neighboring genes. An additional hyperparameter, inversely related to the number of empirical observations, determines the strength of the background variance. Simulations show that these point estimates, combined with a ttest, provide a systematic inference approach that compares favorably with simple ttest or fold methods, and partly compensate for the lack of replication. Availability: The approach is implemented in a software called CyberT accessible through a Web interface at www.genomics.uci.edu/software.html. The code is available as Open Source and is written in the freely available statistical language R. and Department of Biological Chemistry, College of Medicine, University of California, Irvine. To whom all correspondence should be addressed. Contact: pfbaldi@ics.uci.edu, tdlong@uci.edu. 1
Missing value estimation methods for DNA microarrays
, 2001
"... Motivation: Gene expression microarray experiments can generate data sets with multiple missing expression values. Unfortunately, many algorithms for gene expression analysis require a complete matrix of gene array values as input. For example, methods such as hierarchical clustering and Kmeans clu ..."
Abstract

Cited by 477 (24 self)
 Add to MetaCart
Motivation: Gene expression microarray experiments can generate data sets with multiple missing expression values. Unfortunately, many algorithms for gene expression analysis require a complete matrix of gene array values as input. For example, methods such as hierarchical clustering and Kmeans clustering are not robust to missing data, and may lose effectiveness even with a few missing values. Methods for imputing missing data are needed, therefore, to minimize the effect of incomplete data sets on analyses, and to increase the range of data sets to which these algorithms can be applied. In this report, we investigate automated methods for estimating missing data.
Clustering Gene Expression Patterns
, 1999
"... Recent advances in biotechnology allow researchers to measure expression levels for thousands of genes simultaneously, across different conditions and over time. Analysis of data produced by such experiments offers potential insight into gene function and regulatory mechanisms. A key step in the ana ..."
Abstract

Cited by 451 (11 self)
 Add to MetaCart
Recent advances in biotechnology allow researchers to measure expression levels for thousands of genes simultaneously, across different conditions and over time. Analysis of data produced by such experiments offers potential insight into gene function and regulatory mechanisms. A key step in the analysis of gene expression data is the detection of groups of genes that manifest similar expression patterns. The corresponding algorithmic problem is to cluster multicondition gene expression patterns. In this paper we describe a novel clustering algorithm that was developed for analysis of gene expression data. We define an appropriate stochastic error model on the input, and prove that under the conditions of the model, the algorithm recovers the cluster structure with high probability. The running time of the algorithm on an ngene dataset is O(n 2 (log(n)) c ). We also present a practical heuristic based on the same algorithmic ideas. The heuristic was implemented and its p...
Analysis of variance for gene expression microarray data
 Journal of Computational Biology
, 2000
"... Spotted cDNA microarrays are emerging as a powerful and costeffective tool for largescale analysis of gene expression. Microarrays can be used to measure the relative quantities of speci � c mRNAs in two or more tissue samples for thousands of genes simultaneously. While the power of this technolog ..."
Abstract

Cited by 361 (5 self)
 Add to MetaCart
(Show Context)
Spotted cDNA microarrays are emerging as a powerful and costeffective tool for largescale analysis of gene expression. Microarrays can be used to measure the relative quantities of speci � c mRNAs in two or more tissue samples for thousands of genes simultaneously. While the power of this technology has been recognized, many open questions remain about appropriate analysis of microarray data. One question is how to make valid estimates of the relative expression for genes that are not biased by ancillary sources of variation. Recognizing that there is inherent “noise ” in microarray data, how does one estimate the error variation associated with an estimated change in expression, i.e., how does one construct the error bars? We demonstrate that ANOVA methods can be used to normalize microarray data and provide estimates of changes in gene expression that are corrected for potential confounding effects. This approach establishes a framework for the general analysis and interpretation of microarray data. Key words: Gene expression microarray, differential expression, analysis of variance, bootstrap.
Consensus clustering  A resamplingbased method for class discovery and visualization of gene expression microarray data
 MACHINE LEARNING 52 (2003) 91–118 FUNCTIONAL GENOMICS SPECIAL ISSUE
, 2003
"... ..."
(Show Context)
ModelBased Clustering and Data Transformations for Gene Expression Data
, 2001
"... Motivation: Clustering is a useful exploratory technique for the analysis of gene expression data. Many different heuristic clustering algorithms have been proposed in this context. Clustering algorithms based on probability models offer a principled alternative to heuristic algorithms. In particula ..."
Abstract

Cited by 200 (9 self)
 Add to MetaCart
Motivation: Clustering is a useful exploratory technique for the analysis of gene expression data. Many different heuristic clustering algorithms have been proposed in this context. Clustering algorithms based on probability models offer a principled alternative to heuristic algorithms. In particular, modelbased clustering assumes that the data is generated by a finite mixture of underlying probability distributions such as multivariate normal distributions. The issues of selecting a 'good' clustering method and determining the 'correct' number of clusters are reduced to model selection problems in the probability framework. Gaussian mixture models have been shown to be a powerful tool for clustering in many applications.