Results 1 - 10
of
473
The Google File System
- ACM SIGOPS OPERATING SYSTEMS REVIEW
, 2003
"... We have designed and implemented the Google File System, a scalable distributed file system for large distributed data-intensive applications. It provides fault tolerance while running on inexpensive commodity hardware, and it delivers high aggregate performance to a large number of clients. While s ..."
Abstract
-
Cited by 1501 (3 self)
- Add to MetaCart
(Show Context)
We have designed and implemented the Google File System, a scalable distributed file system for large distributed data-intensive applications. It provides fault tolerance while running on inexpensive commodity hardware, and it delivers high aggregate performance to a large number of clients. While sharing many of the same goals as previous distributed file systems, our design has been driven by observations of our application workloads and technological environment, both current and anticipated, that reflect a marked departure from some earlier file system assumptions. This has led us to reexamine traditional choices and explore radically different design points. The file system has successfully met our storage needs. It is widely deployed within Google as the storage platform for the generation and processing of data used by our service as well as research and development efforts that require large data sets. The largest cluster to date provides hundreds of terabytes of storage across thousands of disks on over a thousand machines, and it is concurrently accessed by hundreds of clients. In this paper, we present file system interface extensions designed to support distributed applications, discuss many aspects of our design, and report measurements from both micro-benchmarks and real world use.
Oceanstore: An architecture for global-scale persistent storage
, 2000
"... OceanStore is a utility infrastructure designed to span the globe and provide continuous access to persistent information. Since this infrastructure is comprised of untrusted servers, data is protected through redundancy and cryptographic techniques. To improve performance, data is allowed to be cac ..."
Abstract
-
Cited by 1149 (32 self)
- Add to MetaCart
(Show Context)
OceanStore is a utility infrastructure designed to span the globe and provide continuous access to persistent information. Since this infrastructure is comprised of untrusted servers, data is protected through redundancy and cryptographic techniques. To improve performance, data is allowed to be cached anywhere, anytime. Additionally, monitoring of usage patterns allows adaptation to regional outages and denial of service attacks; monitoring also enhances performance through pro-active movement of data. A prototype implementation is currently under development. 1
Storage management and caching in PAST, a large-scale, persistent peer-to-peer storage utility
, 2001
"... This paper presents and evaluates the storage management and caching in PAST, a large-scale peer-to-peer persistent storage utility. PAST is based on a self-organizing, Internetbased overlay network of storage nodes that cooperatively route file queries, store multiple replicas of files, and cache a ..."
Abstract
-
Cited by 803 (23 self)
- Add to MetaCart
This paper presents and evaluates the storage management and caching in PAST, a large-scale peer-to-peer persistent storage utility. PAST is based on a self-organizing, Internetbased overlay network of storage nodes that cooperatively route file queries, store multiple replicas of files, and cache additional copies of popular files. In the PAST system, storage nodes and files are each assigned uniformly distributed identifiers, and replicas of a file are stored at nodes whose identifier matches most closely the file’s identifier. This statistical assignment of files to storage nodes approximately balances the number of files stored on each node. However, non-uniform storage node capacities and file sizes require more explicit storage load balancing to permit graceful behavior under high global storage utilization; likewise, non-uniform popularity of files requires caching to minimize fetch distance and to balance the query load. We present and evaluate PAST, with an emphasis on its storage management and caching system. Extensive tracedriven experiments show that the system minimizes fetch distance, that it balances the query load for popular files, and that it displays graceful degradation of performance as the global storage utilization increases beyond 95%.
PVFS: A Parallel File System For Linux Clusters
- IN PROCEEDINGS OF THE 4TH ANNUAL LINUX SHOWCASE AND CONFERENCE
, 2000
"... As Linux clusters have matured as platforms for low-cost, high-performance parallel computing, software packages to provide many key services have emerged, especially in areas such as message passing and networking. One area devoid of support, however, has been parallel file systems, which are criti ..."
Abstract
-
Cited by 425 (34 self)
- Add to MetaCart
As Linux clusters have matured as platforms for low-cost, high-performance parallel computing, software packages to provide many key services have emerged, especially in areas such as message passing and networking. One area devoid of support, however, has been parallel file systems, which are critical for high-performance I/O on such clusters. We have developed a parallel file system for Linux clusters, called the Parallel Virtual File System (PVFS). PVFS is intended both as a high-performance parallel file system that anyone can download and use and as a tool for pursuing further research in parallel I/O and parallel file systems for Linux clusters. In this paper, we describe the design and implementation of PVFS and present performance results on the Chiba City cluster at Argonne. We provide performance results for a workload of concurrent reads and writes for various numbers of compute nodes, I/O nodes, and I/O request sizes. We also present performance results for MPI-IO on PVFS, both for a concurrent read/write workload and for the BTIO benchmark. We compare the I/O performance when using a Myrinet network versus a fast-ethernet network for I/O-related communication in PVFS. We obtained read and write bandwidths as high as 700 Mbytes/sec with Myrinet and 225 Mbytes/sec with fast ethernet.
Petal: Distributed Virtual Disks
- In Proceedings of the Seventh International Conference on Architectural Support for Programming Languages and Operating Systems
, 1996
"... The ideal storage system is globally accessible, always available, provides unlimited performance and capacity for a large number of clients, and requires no management. This paper describes the design, implementation, and performance of Petal, a system that attempts to approximate this ideal in pra ..."
Abstract
-
Cited by 361 (5 self)
- Add to MetaCart
(Show Context)
The ideal storage system is globally accessible, always available, provides unlimited performance and capacity for a large number of clients, and requires no management. This paper describes the design, implementation, and performance of Petal, a system that attempts to approximate this ideal in practice through a novel combination of features. Petal consists of a collection of networkconnected servers that cooperatively manage a pool of physical disks. To a Petal client, this collection appears as a highly available block-level storage system that provides large abstract containers called virtual disks. A virtual disk is globally accessible to all Petal clients on the network. A client can create a virtual disk on demand to tap the entire capacity and performance of the underlying physical resources. Furthermore, additional resources, such as servers and disks, can be automatically incorporated into Petal. We have an initial Petal prototype consisting of four 225 MHz DEC 3000/700 work...
Frangipani: A Scalable Distributed File System
"... The ideal distributed file system would provide all its users with coherent, shared access to the same set of files,yet would be arbitrarily scalable to provide more storage space and higher performance to a growing user community. It would be highly available in spite of component failures. It woul ..."
Abstract
-
Cited by 320 (1 self)
- Add to MetaCart
(Show Context)
The ideal distributed file system would provide all its users with coherent, shared access to the same set of files,yet would be arbitrarily scalable to provide more storage space and higher performance to a growing user community. It would be highly available in spite of component failures. It would require minimal human administration, and administration would not become more complex as more components were added. Frangipani is a new file system that approximates this ideal, yet was relatively easy to build because of its two-layer structure. The lower layer is Petal (described in an earlier paper), a distributed storage service that provides incrementally scalable, highly available, automatically managed virtual disks. In the upper layer, multiple machines run the same Frangipani file system code on top of a shared Petal virtual disk, using a distributed lock service to ensure coherence. Frangipaniis meant to run in a cluster of machines that are under a common administration and can communicate securely. Thus the machines trust one another and the shared virtual disk approach is practical. Of course, a Frangipani file system can be exported to untrusted machines using ordinary network file access protocols. We have implemented Frangipani on a collection of Alphas running DIGITAL Unix 4.0. Initial measurements indicate that Frangipani has excellent single-server performance and scales well as servers are added.
On the Scale and Performance of Cooperative Web Proxy Caching
- ACM Symposium on Operating Systems Principles
, 1999
"... While algorithms for cooperative proxy caching have been widely studied, little is understood about cooperative-caching performance in the large-scale World Wide Web environment. This paper uses both trace-based analysis and analytic modelling to show the potential advantages and drawbacks of inter- ..."
Abstract
-
Cited by 313 (15 self)
- Add to MetaCart
(Show Context)
While algorithms for cooperative proxy caching have been widely studied, little is understood about cooperative-caching performance in the large-scale World Wide Web environment. This paper uses both trace-based analysis and analytic modelling to show the potential advantages and drawbacks of inter-proxy cooperation. With our traces, we evaluate quantitatively the performance-improvement potential of cooperation between 200 small-organization proxies within a university environment, and between two large-organization proxies handling 23,000 and 60,000 clients, respectively. With our model, we extend beyond these populations to project cooperative caching behavior in regions with millions of clients. Overall, we demonstrate that cooperative caching has performance benefits only within limited population bounds. We also use our model to examine the implications of future trends in Web-access behavior and traffic.
Ivy: A Read/Write Peer-to-Peer File System
, 2002
"... Ivy is a multi-user read/write peer-to-peer file system. Ivy has no centralized or dedicated components, and it provides useful integrity properties without requiring users to fully trust either the underlying peer-to-peer storage system or the other users of the file system.
An Ivy file system con ..."
Abstract
-
Cited by 298 (12 self)
- Add to MetaCart
(Show Context)
Ivy is a multi-user read/write peer-to-peer file system. Ivy has no centralized or dedicated components, and it provides useful integrity properties without requiring users to fully trust either the underlying peer-to-peer storage system or the other users of the file system.
An Ivy file system consists solely of a set of logs, one log per participant. Ivy stores its logs in the DHash distributed hash table. Each participant finds data by consulting all logs, but performs modifications by appending only to its own log. This arrangement allows Ivy to maintain meta-data consistency without locking. Ivy users can choose which other logs to trust, an appropriate arrangement in a semi-open peer-to-peer system.
Ivy presents applications with a conventional file system interface. When the underlying network is fully connected, Ivy provides NFS-like semantics, such as close-to-open consistency. Ivy detects conflicting modifications made during a partition, and provides relevant version information to application-specific conflict resolvers. Performance measurements on a wide-area network show that Ivy is two to three times slower than NFS.
The Power of Two Choices in Randomized Load Balancing
- IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
, 1996
"... Suppose that n balls are placed into n bins, each ball being placed into a bin chosen independently and uniformly at random. Then, with high probability, the maximum load in any bin is approximately log n log log n . Suppose instead that each ball is placed sequentially into the least full of d ..."
Abstract
-
Cited by 291 (24 self)
- Add to MetaCart
Suppose that n balls are placed into n bins, each ball being placed into a bin chosen independently and uniformly at random. Then, with high probability, the maximum load in any bin is approximately log n log log n . Suppose instead that each ball is placed sequentially into the least full of d bins chosen independently and uniformly at random. It has recently been shown that the maximum load is then only log log n log d +O(1) with high probability. Thus giving each ball two choices instead of just one leads to an exponential improvement in the maximum load. This result demonstrates the power of two choices, and it has several applications to load balancing in distributed systems. In this thesis, we expand upon this result by examining related models and by developing techniques for stu...
Building Secure and Reliable Network Applications
, 1996
"... ly, the remote procedure call problem, which an RPC protocol undertakes to solve, consists of emulating LPC using message passing. LPC has a number of "properties" -- a single procedure invocation results in exactly one execution of the procedure body, the result returned is reliably deliv ..."
Abstract
-
Cited by 230 (16 self)
- Add to MetaCart
ly, the remote procedure call problem, which an RPC protocol undertakes to solve, consists of emulating LPC using message passing. LPC has a number of "properties" -- a single procedure invocation results in exactly one execution of the procedure body, the result returned is reliably delivered to the invoker, and exceptions are raised if (and only if) an error occurs. Given a completely reliable communication environment, which never loses, duplicates, or reorders messages, and given client and server processes that never fail, RPC would be trivial to solve. The sender would merely package the invocation into one or more messages, and transmit these to the server. The server would unpack the data into local variables, perform the desired operation, and send back the result (or an indication of any exception that occurred) in a reply message. The challenge, then, is created by failures. Were it not for the possibility of process and machine crashes, an RPC protocol capable of overcomi...