Results 1 - 10
of
1,290
A Scalable Content-Addressable Network
- IN PROC. ACM SIGCOMM 2001
, 2001
"... Hash tables – which map “keys ” onto “values” – are an essential building block in modern software systems. We believe a similar functionality would be equally valuable to large distributed systems. In this paper, we introduce the concept of a Content-Addressable Network (CAN) as a distributed infra ..."
Abstract
-
Cited by 3371 (32 self)
- Add to MetaCart
(Show Context)
Hash tables – which map “keys ” onto “values” – are an essential building block in modern software systems. We believe a similar functionality would be equally valuable to large distributed systems. In this paper, we introduce the concept of a Content-Addressable Network (CAN) as a distributed infrastructure that provides hash table-like functionality on Internet-like scales. The CAN is scalable, fault-tolerant and completely self-organizing, and we demonstrate its scalability, robustness and low-latency properties through simulation.
Tapestry: An infrastructure for fault-tolerant wide-area location and routing
, 2001
"... In today’s chaotic network, data and services are mobile and replicated widely for availability, durability, and locality. Components within this infrastructure interact in rich and complex ways, greatly stressing traditional approaches to name service and routing. This paper explores an alternative ..."
Abstract
-
Cited by 1250 (31 self)
- Add to MetaCart
In today’s chaotic network, data and services are mobile and replicated widely for availability, durability, and locality. Components within this infrastructure interact in rich and complex ways, greatly stressing traditional approaches to name service and routing. This paper explores an alternative to traditional approaches called Tapestry. Tapestry is an overlay location and routing infrastructure that provides location-independent routing of messages directly to the closest copy of an object or service using only point-to-point links and without centralized resources. The routing and directory information within this infrastructure is purely soft state and easily repaired. Tapestry is self-administering, fault-tolerant, and resilient under load. This paper presents the architecture and algorithms of Tapestry and explores their advantages through a number of experiments.
Resilient Overlay Networks
, 2001
"... A Resilient Overlay Network (RON) is an architecture that allows distributed Internet applications to detect and recover from path outages and periods of degraded performance within several seconds, improving over today’s wide-area routing protocols that take at least several minutes to recover. A R ..."
Abstract
-
Cited by 1160 (31 self)
- Add to MetaCart
(Show Context)
A Resilient Overlay Network (RON) is an architecture that allows distributed Internet applications to detect and recover from path outages and periods of degraded performance within several seconds, improving over today’s wide-area routing protocols that take at least several minutes to recover. A RON is an application-layer overlay on top of the existing Internet routing substrate. The RON nodes monitor the functioning and quality of the Internet paths among themselves, and use this information to decide whether to route packets directly over the Internet or by way of other RON nodes, optimizing application-specific routing metrics. Results from two sets of measurements of a working RON deployed at sites scattered across the Internet demonstrate the benefits of our architecture. For instance, over a 64-hour sampling period in March 2001 across a twelve-node RON, there were 32 significant outages, each lasting over thirty minutes, over the 132 measured paths. RON’s routing mechanism was able to detect, recover, and route around all of them, in less than twenty seconds on average, showing that its methods for fault detection and recovery work well at discovering alternate paths in the Internet. Furthermore, RON was able to improve the loss rate, latency, or throughput perceived by data transfers; for example, about 5 % of the transfers doubled their TCP throughput and 5 % of our transfers saw their loss probability reduced by 0.05. We found that forwarding packets via at most one intermediate RON node is sufficient to overcome faults and improve performance in most cases. These improvements, particularly in the area of fault detection and recovery, demonstrate the benefits of moving some of the control over routing into the hands of end-systems.
Scalable Application Layer Multicast
, 2002
"... We describe a new scalable application-layer multicast protocol, specifically designed for low-bandwidth, data streaming applications with large receiver sets. Our scheme is based upon a hierarchical clustering of the application-layer multicast peers and can support a number of different data deliv ..."
Abstract
-
Cited by 731 (21 self)
- Add to MetaCart
(Show Context)
We describe a new scalable application-layer multicast protocol, specifically designed for low-bandwidth, data streaming applications with large receiver sets. Our scheme is based upon a hierarchical clustering of the application-layer multicast peers and can support a number of different data delivery trees with desirable properties. We present extensive simulations of both our protocol and the Narada application-layer multicast protocol over Internet-like topologies. Our results show that for groups of size 32 or more, our protocol has lower link stress (by about 25%), improved or similar endto-end latencies and similar failure recovery properties. More importantly, it is able to achieve these results by using orders of magnitude lower control traffic. Finally, we present results from our wide-area testbed in which we experimented with 32-100 member groups distributed over 8 different sites. In our experiments, averagegroup members established and maintained low-latency paths and incurred a maximum packet loss rate of less than 1 % as members randomly joined and left the multicast group. The average control overhead during our experiments was less than 1 Kbps for groups of size 100.
SCRIBE: A large-scale and decentralized application-level multicast infrastructure
- IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS (JSAC
, 2002
"... This paper presents Scribe, a scalable application-level multicast infrastructure. Scribe supports large numbers of groups, with a potentially large number of members per group. Scribe is built on top of Pastry, a generic peer-to-peer object location and routing substrate overlayed on the Internet, ..."
Abstract
-
Cited by 658 (29 self)
- Add to MetaCart
(Show Context)
This paper presents Scribe, a scalable application-level multicast infrastructure. Scribe supports large numbers of groups, with a potentially large number of members per group. Scribe is built on top of Pastry, a generic peer-to-peer object location and routing substrate overlayed on the Internet, and leverages Pastry's reliability, self-organization, and locality properties. Pastry is used to create and manage groups and to build efficient multicast trees for the dissemination of messages to each group. Scribe provides best-effort reliability guarantees, but we outline how an application can extend Scribe to provide stronger reliability. Simulation results, based on a realistic network topology model, show that Scribe scales across a wide range of groups and group sizes. Also, it balances the load on the nodes while achieving acceptable delay and link stress when compared to IP multicast.
Predicting Internet Network Distance with Coordinates-Based Approaches
- In INFOCOM
, 2001
"... In this paper, we propose to use coordinates-based mechanisms in a peer-to-peer architecture to predict Internet network distance (i.e. round-trip propagation and transmission delay) . We study two mechanisms. The first is a previously proposed scheme, called the triangulated heuristic, which is bas ..."
Abstract
-
Cited by 631 (6 self)
- Add to MetaCart
(Show Context)
In this paper, we propose to use coordinates-based mechanisms in a peer-to-peer architecture to predict Internet network distance (i.e. round-trip propagation and transmission delay) . We study two mechanisms. The first is a previously proposed scheme, called the triangulated heuristic, which is based on relative coordinates that are simply the distances from a host to some special network nodes. We propose the second mechanism, called Global Network Positioning (GNP), which is based on absolute coordinates computed from modeling the Internet as a geometric space. Since end hosts maintain their own coordinates, these approaches allow end hosts to compute their inter-host distances as soon as they discover each other. Moreover coordinates are very efficient in summarizing inter-host distances, making these approaches very scalable. By performing experiments using measured Internet distance data, we show that both coordinates-based schemes are more accurate than the existing state of the art system IDMaps, and the GNP approach achieves the highest accuracy and robustness among them.
Overcast: Reliable Multicasting with an Overlay Network
, 2000
"... Overcast is an application-level multicasting system that can be incrementally deployed using today's Internet infrastructure. These properties stem from Overcast's implementation as an overlay network. An overlay network consists of a collection of nodes placed at strategic locations in a ..."
Abstract
-
Cited by 561 (10 self)
- Add to MetaCart
(Show Context)
Overcast is an application-level multicasting system that can be incrementally deployed using today's Internet infrastructure. These properties stem from Overcast's implementation as an overlay network. An overlay network consists of a collection of nodes placed at strategic locations in an existing network fabric. These nodes implement a network abstraction on top of the network provided by the underlying substrate network. Overcast provides
Network Coding for Large Scale Content Distribution
"... We propose a new scheme for content distribution of large files that is based on network coding. With network coding, each node of the distribution network is able to generate and transmit encoded blocks of information. The randomization introduced by the coding process eases the scheduling of bloc ..."
Abstract
-
Cited by 493 (7 self)
- Add to MetaCart
(Show Context)
We propose a new scheme for content distribution of large files that is based on network coding. With network coding, each node of the distribution network is able to generate and transmit encoded blocks of information. The randomization introduced by the coding process eases the scheduling of block propagation, and, thus, makes the distribution more efficient. This is particularly important in large unstructured overlay networks, where the nodes need to make decisions based on local information only. We compare network coding to other schemes that transmit unencoded information (i.e. blocks of the original file) and, also, to schemes in which only the source is allowed to generate and transmit encoded packets. We study the performance of network coding in heterogeneous networks with dynamic node arrival and departure patterns, clustered topologies, and when incentive mechanisms to discourage free-riding are in place. We demonstrate through simulations of scenarios of practical interest that the expected file download time improves by more than 20-30 % with network coding compared to coding at the server only and, by more than 2-3 times compared to sending unencoded information. Moreover, we show that network coding improves the robustness of the system and is able to smoothly handle extreme situations where the server and nodes departure the system.
CoolStreaming/DONet: A Data-driven Overlay Network for Peer-to-Peer Live Media Streaming
- in IEEE Infocom
, 2005
"... This paper presents DONet, a Data-driven Overlay Network for live media streaming. The core operations in DONet are very simple: every node periodically exchanges data availability information with a set of partners, and retrieves unavailable data from one or more partners, or supplies available dat ..."
Abstract
-
Cited by 475 (42 self)
- Add to MetaCart
(Show Context)
This paper presents DONet, a Data-driven Overlay Network for live media streaming. The core operations in DONet are very simple: every node periodically exchanges data availability information with a set of partners, and retrieves unavailable data from one or more partners, or supplies available data to partners. We emphasize three salient features of this data-driven design: 1) easy to implement, as it does not have to construct and maintain a complex global structure; 2) efficient, as data forwarding is dynamically determined according to data availability while not restricted by specific directions; and 3) robust and resilient, as the partnerships enable adaptive and quick switching among multi-suppliers. We show through analysis that DONet is scalable with bounded delay. We also address a set of practical challenges for realizing DONet, and propose an efficient member- and partnership management algorithm, together with an intelligent scheduling algorithm that achieves real-time and continuous distribution of streaming contents.
Bayeux: An architecture for scalable and fault-tolerant wide-area data dissemination
, 2001
"... The demand for streaming multimedia applications is growing at an incredible rate. In this paper, we propose Bayeux, an efficient application-level multicast system that scales to arbitrarily large receiver groups while tolerating failures in routers and network links. Bayeux also includes specific ..."
Abstract
-
Cited by 465 (12 self)
- Add to MetaCart
(Show Context)
The demand for streaming multimedia applications is growing at an incredible rate. In this paper, we propose Bayeux, an efficient application-level multicast system that scales to arbitrarily large receiver groups while tolerating failures in routers and network links. Bayeux also includes specific mechanisms for load-balancing across replicate root nodes and more efficient bandwidth consumption. Our simulation results indicate that Bayeux maintains these properties while keeping transmission overhead low. To achieve these properties, Bayeux leverages the architecture of Tapestry, a fault-tolerant, wide-area overlay routing and location network.