Results 1  10
of
1,370
Compositional Model Checking
, 1999
"... We describe a method for reducing the complexity of temporal logic model checking in systems composed of many parallel processes. The goal is to check properties of the components of a system and then deduce global properties from these local properties. The main difficulty with this type of approac ..."
Abstract

Cited by 3218 (68 self)
 Add to MetaCart
We describe a method for reducing the complexity of temporal logic model checking in systems composed of many parallel processes. The goal is to check properties of the components of a system and then deduce global properties from these local properties. The main difficulty with this type of approach is that local properties are often not preserved at the global level. We present a general framework for using additional interface processes to model the environment for a component. These interface processes are typically much simpler than the full environment of the component. By composing a component with its interface processes and then checking properties of this composition, we can guarantee that these properties will be preserved at the global level. We give two example compositional systems based on the logic CTL*.
Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifolds
 Journal of Machine Learning Research
, 2003
"... The problem of dimensionality reduction arises in many fields of information processing, including machine learning, data compression, scientific visualization, pattern recognition, and neural computation. ..."
Abstract

Cited by 383 (11 self)
 Add to MetaCart
The problem of dimensionality reduction arises in many fields of information processing, including machine learning, data compression, scientific visualization, pattern recognition, and neural computation.
Interactive Control of Avatars Animated with Human Motion Data
, 2002
"... Realtime control of threedimensional avatars is an important problem in the context of computer games and virtual environments. Avatar animation and control is difficult, however, because a large repertoire of avatar behaviors must be made available, and the user must be able to select from this s ..."
Abstract

Cited by 369 (37 self)
 Add to MetaCart
Realtime control of threedimensional avatars is an important problem in the context of computer games and virtual environments. Avatar animation and control is difficult, however, because a large repertoire of avatar behaviors must be made available, and the user must be able to select from this set of behaviors, possibly with a lowdimensional input device. One appealing approach to obtaining a rich set of avatar behaviors is to collect an extended, unlabeled sequence of motion data appropriate to the application. In this paper, we show that such a motion database can be preprocessed for flexibility in behavior and efficient search and exploited for realtime avatar control. Flexibility is created by identifying plausible transitions between motion segments, and efficient search through the resulting graph structure is obtained through clustering. Three interface techniques are demonstrated for controlling avatar motion using this data structure: the user selects from a set of available choices, sketches a path through an environment, or acts out a desired motion in front of a video camera. We demonstrate the flexibility of the approach through four different applications and compare the avatar motion to directly recorded human motion.
An AutomataTheoretic Approach to BranchingTime Model Checking
 JOURNAL OF THE ACM
, 1998
"... Translating linear temporal logic formulas to automata has proven to be an effective approach for implementing lineartime modelchecking, and for obtaining many extensions and improvements to this verification method. On the other hand, for branching temporal logic, automatatheoretic techniques ..."
Abstract

Cited by 360 (67 self)
 Add to MetaCart
Translating linear temporal logic formulas to automata has proven to be an effective approach for implementing lineartime modelchecking, and for obtaining many extensions and improvements to this verification method. On the other hand, for branching temporal logic, automatatheoretic techniques have long been thought to introduce an exponential penalty, making them essentially useless for modelchecking. Recently, Bernholtz and Grumberg have shown that this exponential penalty can be avoided, though they did not match the linear complexity of nonautomatatheoretic algorithms. In this paper we show that alternating tree automata are the key to a comprehensive automatatheoretic framework for branching temporal logics. Not only, as was shown by Muller et al., can they be used to obtain optimal decision procedures, but, as we show here, they also make it possible to derive optimal modelchecking algorithms. Moreover, the simple combinatorial structure that emerges from the a...
Automatic Translation of FORTRAN Programs to Vector Form
 ACM Transactions on Programming Languages and Systems
, 1987
"... This paper discusses the theoretical concepts underlying a project at Rice University to develop an automatic translator, called PFC (for Parallel FORTRAN Converter), from FORTRAN to FORTRAN 8x. The Rice project, based initially upon the research of Kuck and others at the University of Illinois [6, ..."
Abstract

Cited by 324 (34 self)
 Add to MetaCart
(Show Context)
This paper discusses the theoretical concepts underlying a project at Rice University to develop an automatic translator, called PFC (for Parallel FORTRAN Converter), from FORTRAN to FORTRAN 8x. The Rice project, based initially upon the research of Kuck and others at the University of Illinois [6, 1721, 24, 32, 36], is a continuation of work begun while on leave at IBM Research in Yorktown Heights, N.Y. Our first implementation was based on the Illinois PARAFRASE compiler [20, 36], but the current version is a completely new program (although it performs many of the same transformations as PARAFRASE). Other projects that have influenced our work are the Texas Instruments ASC compiler [9, 33], the Cray1 FORTRAN compiler [15], and the Massachusetts Computer Associates Vectorizer [22, 25]. The paper is organized into seven sections. Section 2 introduces FORTRAN 8x and gives examples of its use. Section 3 presents an overview of the translation process along with an extended translation example. Section 4 develops the concept of interstatement dependence and shows how it can be applied to the problem of vectorization. Loop carried dependence and loop independent dependence are introduced in this section to extend dependence to multiple statements and multiple loops. Section 5 develops dependencebased algorithms for code generation and transformations for enhancing the parallelism of a statement. Section 6 describes a method for extending the power of data dependence to control statements by the process of IF conversion. Finally, Section 7 details the current state of PFC and our plans for its continued development
DBXplorer: A system for keywordbased search over relational databases
 In ICDE
, 2002
"... Internet search engines have popularized the keywordbased search paradigm. While traditional database management systems offer powerful query languages, they do not allow keywordbased search. In this paper, we discuss DBXplorer, a system that enables keywordbased search in relational databases. DBX ..."
Abstract

Cited by 293 (4 self)
 Add to MetaCart
(Show Context)
Internet search engines have popularized the keywordbased search paradigm. While traditional database management systems offer powerful query languages, they do not allow keywordbased search. In this paper, we discuss DBXplorer, a system that enables keywordbased search in relational databases. DBXplorer has been implemented using a commercial relational database and web server and allows users to interact via a browser frontend. We outline the challenges and discuss the implementation of our system including results of extensive experimental evaluation. 1.
Efficient planarity testing
 J. ASSOC. COMPUT. MACH
, 1974
"... This paper describes an efficient algorithm to determine whether an arbitrary graph G can be embedded in the plane. The algorithm may be viewed as an iterative version of a method originally proposed by Auslander and Parter and correctly formulated by Goldstein. The algorithm uses depthfirst sear ..."
Abstract

Cited by 280 (5 self)
 Add to MetaCart
This paper describes an efficient algorithm to determine whether an arbitrary graph G can be embedded in the plane. The algorithm may be viewed as an iterative version of a method originally proposed by Auslander and Parter and correctly formulated by Goldstein. The algorithm uses depthfirst search and has O(V) time and space bounds, where V is the number of vertices in G. An ALGOS implementation of the algorithm successfully tested graphs with as many as 900 vertices in less than 12 seconds.
ASSAT: Computing Answer Sets of a Logic Program by SAT Solvers
 Artificial Intelligence
, 2002
"... We propose a new translation from normal logic programs with constraints under the answer set semantics to propositional logic. Given a normal logic program, we show that by adding, for each loop in the program, a corresponding loop formula to the program’s completion, we obtain a onetoone corresp ..."
Abstract

Cited by 263 (7 self)
 Add to MetaCart
(Show Context)
We propose a new translation from normal logic programs with constraints under the answer set semantics to propositional logic. Given a normal logic program, we show that by adding, for each loop in the program, a corresponding loop formula to the program’s completion, we obtain a onetoone correspondence between the answer sets of the program and the models of the resulting propositional theory. In the worst case, there may be an exponential number of loops in a logic program. To address this problem, we propose an approach that adds loop formulas a few at a time, selectively. Based on these results, we implement a system called ASSAT(X), depending on the SAT solver X used, for computing one answer set of a normal logic program with constraints. We test the system on a variety of benchmarks including the graph coloring, the blocks world planning, and Hamiltonian Circuit domains. Our experimental results show that in these domains, for the task of generating one answer set of a normal logic program, our system has a clear edge over the stateofart answer set programming systems Smodels and DLV. 1 1
A Technique for Drawing Directed Graphs
 IEEE Transactions on Software Engineering
, 1993
"... We describe a fourpass algorithm for drawing directed graphs. The first pass finds an optimal rank assignment using a network simplex algorithm. The second pass sets the vertex order within ranks by an iterative heuristic incorporating a novel weight function and local transpositions to reduce cros ..."
Abstract

Cited by 255 (19 self)
 Add to MetaCart
We describe a fourpass algorithm for drawing directed graphs. The first pass finds an optimal rank assignment using a network simplex algorithm. The second pass sets the vertex order within ranks by an iterative heuristic incorporating a novel weight function and local transpositions to reduce crossings. The third pass finds optimal coordinates for nodes by constructing and ranking an auxiliary graph. The fourth pass makes splines to draw edges. The algorithm makes good drawings and runs fast. 1.
Modelchecking algorithms for continuoustime Markov chains
 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
, 2003
"... Continuoustime Markov chains (CTMCs) have been widely used to determine system performance and dependability characteristics. Their analysis most often concerns the computation of steadystate and transientstate probabilities. This paper introduces a branching temporal logic for expressing realt ..."
Abstract

Cited by 231 (45 self)
 Add to MetaCart
(Show Context)
Continuoustime Markov chains (CTMCs) have been widely used to determine system performance and dependability characteristics. Their analysis most often concerns the computation of steadystate and transientstate probabilities. This paper introduces a branching temporal logic for expressing realtime probabilistic properties on CTMCs and presents approximate model checking algorithms for this logic. The logic, an extension of the continuous stochastic logic CSL of Aziz et al., contains a timebounded until operator to express probabilistic timing properties over paths as well as an operator to express steadystate probabilities. We show that the model checking problem for this logic reduces to a system of linear equations (for unbounded until and the steadystate operator) and a Volterra integral equation system (for timebounded until). We then show that the problem of modelchecking timebounded until properties can be reduced to the problem of computing transient state probabilities for CTMCs. This allows the verification of probabilistic timing properties by efficient techniques for transient analysis for CTMCs such as uniformization. Finally, we show that a variant of lumping equivalence (bisimulation), a wellknown notion for aggregating CTMCs, preserves the validity of all formulas in the logic.