Results 1 - 10
of
311
Machine Learning in Automated Text Categorization
- ACM COMPUTING SURVEYS
, 2002
"... The automated categorization (or classification) of texts into predefined categories has witnessed a booming interest in the last ten years, due to the increased availability of documents in digital form and the ensuing need to organize them. In the research community the dominant approach to this p ..."
Abstract
-
Cited by 1734 (22 self)
- Add to MetaCart
The automated categorization (or classification) of texts into predefined categories has witnessed a booming interest in the last ten years, due to the increased availability of documents in digital form and the ensuing need to organize them. In the research community the dominant approach to this problem is based on machine learning techniques: a general inductive process automatically builds a classifier by learning, from a set of preclassified documents, the characteristics of the categories. The advantages of this approach over the knowledge engineering approach (consisting in the manual definition of a classifier by domain experts) are a very good effectiveness, considerable savings in terms of expert labor power, and straightforward portability to different domains. This survey discusses the main approaches to text categorization that fall within the machine learning paradigm. We will discuss in detail issues pertaining to three different problems, namely document representation, classifier construction, and classifier evaluation.
Inductive learning algorithms and representations for text categorization,”
- in Proceedings of the International Conference on Information and Knowledge Management,
, 1998
"... ABSTRACT Text categorization -the assignment of natural language texts to one or more predefined categories based on their content -is an important component in many information organization and management tasks. We compare the effectiveness of five different automatic learning algorithms for text ..."
Abstract
-
Cited by 652 (8 self)
- Add to MetaCart
ABSTRACT Text categorization -the assignment of natural language texts to one or more predefined categories based on their content -is an important component in many information organization and management tasks. We compare the effectiveness of five different automatic learning algorithms for text categorization in terms of learning speed, realtime classification speed, and classification accuracy. We also examine training set size, and alternative document representations. Very accurate text classifiers can be learned automatically from training examples. Linear Support Vector Machines (SVMs) are particularly promising because they are very accurate, quick to train, and quick to evaluate.
A Probabilistic Analysis of the Rocchio Algorithm with TFIDF for Text Categorization
, 1997
"... The Rocchio relevance feedback algorithm is one of the most popular and widely applied learning methods from information retrieval. Here, a probabilistic analysis of this algorithm is presented in a text categorization framework. The analysis gives theoretical insight into the heuristics used in the ..."
Abstract
-
Cited by 456 (1 self)
- Add to MetaCart
The Rocchio relevance feedback algorithm is one of the most popular and widely applied learning methods from information retrieval. Here, a probabilistic analysis of this algorithm is presented in a text categorization framework. The analysis gives theoretical insight into the heuristics used in the Rocchio algorithm, particularly the word weighting scheme and the similarity metric. It also suggests improvements which lead to a probabilistic variant of the Rocchio classifier. The Rocchio classifier, its probabilistic variant, and a naive Bayes classifier are compared on six text categorization tasks. The results show that the probabilistic algorithms are preferable to the heuristic Rocchio classifier not only because they are more well-founded, but also because they achieve better performance.
Enhanced hypertext categorization using hyperlinks
, 1998
"... A major challenge in indexing unstructured hypertext databases is to automatically extract meta-data that enables structured search using topic taxonomies, circumvents keyword ambiguity, and improves the quality of search and profile-based routing and filtering. Therefore, an accurate classifier is ..."
Abstract
-
Cited by 453 (8 self)
- Add to MetaCart
A major challenge in indexing unstructured hypertext databases is to automatically extract meta-data that enables structured search using topic taxonomies, circumvents keyword ambiguity, and improves the quality of search and profile-based routing and filtering. Therefore, an accurate classifier is an essential component of a hypertext database. Hyperlinks pose new problems not addressed in the extensive text classification literature. Links clearly contain high-quality semantic clues that are lost upon a purely term-based classifier, but exploiting link information is non-trivial because it is noisy. Naive use of terms in the link neighborhood of a document can even degrade accuracy. Our contribution is to propose robust statistical models and a relaxation labeling technique for better classification by exploiting link information in a small neighborhood around documents. Our technique also adapts gracefully to the fraction of neighboring documents having known topics. We experimented with pre-classified samples from Yahoo! â and the US Patent Database2. In previous work, we developed a text classifier that misclassified only 13 % of the documents in the well-known Reuters benchmark; this was comparable to the best results ever obtained. This classifier misclassified 36 % of the patents, indicating that classifying hypertext can be more difficult than classifying text. Naively using terms in neighboring documents increased error to 38%; our hypertext classifier reduced it to 21%. Results with the Yahoo! sample were more dramatic: the text classifier showed 68% error, whereas our hypertext classifier reduced this to only 21%.
Learning to Extract Symbolic Knowledge from the World Wide Web
, 1998
"... The World Wide Web is a vast source of information accessible to computers, but understandable only to humans. The goal of the research described here is to automatically create a computer understandable world wide knowledge base whose content mirrors that of the World Wide Web. Such a ..."
Abstract
-
Cited by 403 (29 self)
- Add to MetaCart
(Show Context)
The World Wide Web is a vast source of information accessible to computers, but understandable only to humans. The goal of the research described here is to automatically create a computer understandable world wide knowledge base whose content mirrors that of the World Wide Web. Such a
Hierarchical classification of Web content
, 2000
"... sdumais @ microsoft.com This paper explores the use of hierarchical structure for classifying a large, heterogeneous collection of web content. The hierarchical structure is initially used to train different second-level classifiers. In the hierarchical case, a model is learned to distinguish a seco ..."
Abstract
-
Cited by 329 (4 self)
- Add to MetaCart
(Show Context)
sdumais @ microsoft.com This paper explores the use of hierarchical structure for classifying a large, heterogeneous collection of web content. The hierarchical structure is initially used to train different second-level classifiers. In the hierarchical case, a model is learned to distinguish a second-level category from other categories within the same top level. In the flat non-hierarchical case, a model distinguishes a second-level category from all other second-level categories. Scoring rules can further take advantage of the hierarchy by considering only second-level categories that exceed a threshold at the top level. We use support vector machine (SVM) classifiers, which have been shown to be efficient and effective for classification, but not previously explored in the context of hierarchical classification. We found small advantages in accuracy for hierarchical models over flat models. For the hierarchical approach, we found the same accuracy using a sequential Boolean decision rule and a multiplicative decision rule. Since the sequential approach is much more efficient, requiring only 14%-16 % of the comparisons used in the other approaches, we find it to be a good choice for classifying text into large hierarchical structures.
Context-Sensitive Learning Methods for Text Categorization
- ACM Transactions on Information Systems
, 1996
"... this article, we will investigate the performance of two recently implemented machine-learning algorithms on a number of large text categorization problems. The two algorithms considered are set-valued RIPPER, a recent rule-learning algorithm [Cohen A earlier version of this article appeared in Proc ..."
Abstract
-
Cited by 291 (13 self)
- Add to MetaCart
this article, we will investigate the performance of two recently implemented machine-learning algorithms on a number of large text categorization problems. The two algorithms considered are set-valued RIPPER, a recent rule-learning algorithm [Cohen A earlier version of this article appeared in Proceedings of the 19th Annual International ACM Conference on Research and Development in Information Retrieval (SIGIR) pp. 307--315
Learning to Construct Knowledge Bases from the World Wide Web
, 2000
"... The World Wide Web is a vast source of information accessible to computers, but understandable only to humans. The goal of the research described here is to automatically create a computer understandable knowledge base whose content mirrors that of the World Wide Web. Such a knowledge base would ena ..."
Abstract
-
Cited by 242 (5 self)
- Add to MetaCart
(Show Context)
The World Wide Web is a vast source of information accessible to computers, but understandable only to humans. The goal of the research described here is to automatically create a computer understandable knowledge base whose content mirrors that of the World Wide Web. Such a knowledge base would enable much more effective retrieval of Web information, and promote new uses of the Web to support knowledge-based inference and problem solving. Our approach is to develop a trainable information extraction system that takes two inputs. The first is an ontology that defines the classes (e.g., company, person, employee, product) and relations (e.g., employed_by, produced_by) of interest when creating the knowledge base. The second is a set of training data consisting of labeled regions of hypertext that represent instances of these classes and relations. Given these inputs, the system learns to extract information from other pages and hyperlinks on the Web. This article describes our general a...
Maximum Entropy Models for Natural Language Ambiguity Resolution
, 1998
"... The best aspect of a research environment, in my opinion, is the abundance of bright people with whom you argue, discuss, and nurture your ideas. I thank all of the people at Penn and elsewhere who have given me the feedback that has helped me to separate the good ideas from the bad ideas. I hope th ..."
Abstract
-
Cited by 234 (1 self)
- Add to MetaCart
The best aspect of a research environment, in my opinion, is the abundance of bright people with whom you argue, discuss, and nurture your ideas. I thank all of the people at Penn and elsewhere who have given me the feedback that has helped me to separate the good ideas from the bad ideas. I hope that Ihave kept the good ideas in this thesis, and left the bad ideas out! Iwould like toacknowledge the following people for their contribution to my education: I thank my advisor Mitch Marcus, who gave me the intellectual freedom to pursue what I believed to be the best way to approach natural language processing, and also gave me direction when necessary. I also thank Mitch for many fascinating conversations, both personal and professional, over the last four years at Penn. I thank all of my thesis committee members: John La erty from Carnegie Mellon University, Aravind Joshi, Lyle Ungar, and Mark Liberman, for their extremely valuable suggestions and comments about my thesis research. I thank Mike Collins, Jason Eisner, and Dan Melamed, with whom I've had many stimulating and impromptu discussions in the LINC lab. Iowe them much gratitude for their valuable feedback onnumerous rough drafts of papers and thesis chapters.
An Evaluation of Naive Bayesian Anti-Spam Filtering
, 2000
"... It has recently been argued that a Naive Bayesian classifier can be used to filter unsolicited bulk e-mail ("spam"). We conduct a thorough evaluation of this proposal on a corpus that we make publicly available, contributing towards standard benchmarks. At the same time we investigate the ..."
Abstract
-
Cited by 165 (1 self)
- Add to MetaCart
(Show Context)
It has recently been argued that a Naive Bayesian classifier can be used to filter unsolicited bulk e-mail ("spam"). We conduct a thorough evaluation of this proposal on a corpus that we make publicly available, contributing towards standard benchmarks. At the same time we investigate the effect of attribute-set size, training-corpus size, lemmatization, and stop-lists on the filter's performance, issues that had not been previously explored. After introducing appropriate cost-sensitive evaluation measures, we reach the conclusion that additional safety nets are needed for the Naive Bayesian anti-spam filter to be viable in practice.