Results 1  10
of
242
Quantum Gravity
, 2004
"... We describe the basic assumptions and key results of loop quantum gravity, which is a background independent approach to quantum gravity. The emphasis is on the basic physical principles and how one deduces predictions from them, at a level suitable for physicists in other areas such as string theor ..."
Abstract

Cited by 572 (11 self)
 Add to MetaCart
(Show Context)
We describe the basic assumptions and key results of loop quantum gravity, which is a background independent approach to quantum gravity. The emphasis is on the basic physical principles and how one deduces predictions from them, at a level suitable for physicists in other areas such as string theory, cosmology, particle physics, astrophysics and condensed matter physics. No details are given, but references are provided to guide the interested reader to the literature. The present state of knowledge is summarized in a list of 35 key results on topics including the hamiltonian and path integral quantizations, coupling to matter, extensions to supergravity and higher dimensional theories, as well as applications to black holes, cosmology and Plank scale phenomenology. We describe the near term prospects for observational tests of quantum theories of gravity and the expectations that loop quantum gravity may provide predictions for their outcomes. Finally, we provide answers to frequently asked questions and a list of key open problems.
Spin Foam Models for Quantum Gravity
, 2008
"... In this article we review the present status of the spin foam formulation of nonperturbative (background independent) quantum gravity. The article is divided in two parts. In the first part we present a general introduction to the main ideas emphasizing their motivations from various perspectives. R ..."
Abstract

Cited by 123 (7 self)
 Add to MetaCart
In this article we review the present status of the spin foam formulation of nonperturbative (background independent) quantum gravity. The article is divided in two parts. In the first part we present a general introduction to the main ideas emphasizing their motivations from various perspectives. Riemannian 3dimensional gravity is used as a simple example to illustrate conceptual issues and the main goals of the approach. The main features of the various existing models for 4dimensional gravity are also presented here. We conclude with a discussion of important questions to be addressed in four dimensions (gauge invariance, discretization independence, etc.). In the second part we concentrate on the definition of the BarrettCrane model. We present the main results obtained in this framework from a critical perspective. Finally we review the combinatorial formulation of spin foam models based on the dual group field theory technology. We present the BarrettCrane model in this framework and review the finiteness results obtained for both its Riemannian as well
Spin foam models
 Classical and Quantum Gravity
, 1998
"... While the use of spin networks has greatly improved our understanding of the kinematical aspects of quantum gravity, the dynamical aspects remain obscure. To address this problem, we define the concept of a ‘spin foam ’ going from one spin network to another. Just as a spin network is a graph with e ..."
Abstract

Cited by 87 (2 self)
 Add to MetaCart
(Show Context)
While the use of spin networks has greatly improved our understanding of the kinematical aspects of quantum gravity, the dynamical aspects remain obscure. To address this problem, we define the concept of a ‘spin foam ’ going from one spin network to another. Just as a spin network is a graph with edges labeled by representations and vertices labeled by intertwining operators, a spin foam is a 2dimensional complex with faces labeled by representations and edges labeled by intertwining operators. Spin foams arise naturally as higherdimensional analogs of Feynman diagrams in quantum gravity and other gauge theories in the continuum, as well as in lattice gauge theory. When formulated as a ‘spin foam model’, such a theory consists of a rule for computing amplitudes from spin foam vertices, faces, and edges. The product of these amplitudes gives the amplitude for the spin foam, and the transition amplitude between spin networks is given as a sum over spin foams. After reviewing how spin networks describe ‘quantum 3geometries’, we describe how spin foams describe ‘quantum 4geometries’. We conclude by presenting a spin foam model of 4dimensional Euclidean quantum gravity, closely related to the state sum model of Barrett and Crane, but not assuming the presence of an underlying spacetime manifold.
Mathematical structure of loop quantum cosmology
 Adv. Theor. Math. Phys
, 2003
"... Applications of Riemannian quantum geometry to cosmology have had notable successes. In particular, the fundamental discreteness underlying quantum geometry has led to a natural resolution of the big bang singularity. However, the precise mathematical structure underlying loop quantum cosmology and ..."
Abstract

Cited by 74 (33 self)
 Add to MetaCart
(Show Context)
Applications of Riemannian quantum geometry to cosmology have had notable successes. In particular, the fundamental discreteness underlying quantum geometry has led to a natural resolution of the big bang singularity. However, the precise mathematical structure underlying loop quantum cosmology and the sense in which it implements the full quantization program in a symmetry reduced model has not been made explicit. The purpose of this paper is to address these issues, thereby providing a firmer mathematical and conceptual foundation to the subject. 1
Quantum Geometry of Isolated Horizons and Black Hole Entropy
, 2000
"... Using the classical Hamiltonian framework of [1] as the point of departure, we carry out a nonperturbative quantization of the sector of general relativity, coupled to matter, admitting nonrotating isolated horizons as inner boundaries. The emphasis is on the quantum geometry of the horizon. Polym ..."
Abstract

Cited by 72 (4 self)
 Add to MetaCart
Using the classical Hamiltonian framework of [1] as the point of departure, we carry out a nonperturbative quantization of the sector of general relativity, coupled to matter, admitting nonrotating isolated horizons as inner boundaries. The emphasis is on the quantum geometry of the horizon. Polymer excitations of the bulk quantum geometry pierce the horizon endowing it with area. The intrinsic geometry of the horizon is then described by the quantum ChernSimons theory of a U(1) connection on a punctured 2sphere, the horizon. Subtle mathematical features of the quantum ChernSimons theory turn out to be important for the existence of a coherent quantum theory of the horizon geometry. Heuristically, the intrinsic geometry is flat everywhere except at the punctures. The distributional curvature of the U(1) connection at the punctures gives rise to quantized deficit angles which account for the overall curvature. For macroscopic black holes, the logarithm of the number of these horizon microstates is proportional to the area, irrespective of the values of (nongravitational) charges. Thus, the black hole entropy can be accounted for entirely by the quantum states of the horizon geometry. Our analysis is applicable to all nonrotating black holes, including the astrophysically interesting ones which are very far from extremality. Furthermore, cosmological horizons (to which statistical mechanical considerations are known to apply) are naturally incorporated. An effort has been made to make the paper selfcontained by including short reviews of the background material.
Analogue Gravity
 Living Rev. Rel
"... Analogue models of (and for) gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particu ..."
Abstract

Cited by 66 (23 self)
 Add to MetaCart
(Show Context)
Analogue models of (and for) gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental front (where technology is rapidly advancing) and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem
Generalized Lorentz invariance with an invariant energy scale
 grqc/0207085, Phys.Rev. D67
, 2003
"... We propose a modification of special relativity in which a physical energy, which may be the Planck energy, joins the speed of light as an invariant, in spite of a complete relativity of inertial frames and agreement with Einstein’s theory at low energies. This is accomplished by a nonlinear modifi ..."
Abstract

Cited by 62 (5 self)
 Add to MetaCart
(Show Context)
We propose a modification of special relativity in which a physical energy, which may be the Planck energy, joins the speed of light as an invariant, in spite of a complete relativity of inertial frames and agreement with Einstein’s theory at low energies. This is accomplished by a nonlinear modification of the action of the Lorentz group on momentum space, generated by adding a dilatation to each boost in such a way that the Planck energy remains invariant. The associated algebra has unmodified structure constants, and we highlight the similarities between the group action found and a transformation previously proposed by Fock. We also discuss the resulting modifications of field theory and suggest a modification of the equivalence principle which determines how the new theory is embedded in general relativity.
Quantum computation in brain microtubules? The Penrose–Hameroff “Orch OR” model of consciousness.
 Philos Trans R Soc Lond Ser A, Math Phys Sci
, 1998
"... Potential features of quantum computation could explain enigmatic aspects of consciousness. The PenroseHameroff model (orchestrated objective reduction: 'Orch OR') suggests that quantum superposition and a form of quantum computation occur in microtubulescylindrical protein lattices of ..."
Abstract

Cited by 58 (13 self)
 Add to MetaCart
(Show Context)
Potential features of quantum computation could explain enigmatic aspects of consciousness. The PenroseHameroff model (orchestrated objective reduction: 'Orch OR') suggests that quantum superposition and a form of quantum computation occur in microtubulescylindrical protein lattices of the cell cytoskeleton within the brain's neurons. Microtubules couple to and regulate neurallevel synaptic functions, and they may be ideal quantum computers because of dynamical lattice structure, quantumlevel subunit states and intermittent isolation from environmental interactions. In addition to its biological setting, the Orch OR proposal differs in an essential way from technologically envisioned quantum computers in which collapse, or reduction to classical output states, is caused by environmental decoherence (hence introducing randomness). In the Orch OR proposal, reduction of microtubule quantum superposition to classical output states occurs by an objective factorRoger Penrose's quantum gravity threshold stemming from instability in Planckscale separations (superpositions) in spacetime geometry. Output states following Penrose's objective reduction are neither totally deterministic nor random, but influenced by a noncomputable factor ingrained in fundamental spacetime. Taking a modern panpsychist view in which protoconscious experience and Platonic values are embedded in Planckscale spin networks, the Orch OR model portrays consciousness as brain activities linked to fundamental ripples in spacetime geometry. Keywords: consciousness; quantum computation; objective reduction; orchestrated objective reduction (Orch OR); microtubules; brain Quantum computation and consciousness Proposals for quantum computation rely on superposed states implementing multiple computations simultaneously, in parallel, according to quantum linear superposition (see, for example,
Quantum gravity with a positive cosmological constant
, 2002
"... A quantum theory of gravity is described in the case of a positive cosmological constant in 3 + 1 dimensions. Both old and new results are described, which support the case that loop quantum gravity provides a satisfactory quantum theory of gravity. These include the existence of a ground state, dis ..."
Abstract

Cited by 57 (10 self)
 Add to MetaCart
A quantum theory of gravity is described in the case of a positive cosmological constant in 3 + 1 dimensions. Both old and new results are described, which support the case that loop quantum gravity provides a satisfactory quantum theory of gravity. These include the existence of a ground state, discoverd by Kodama, which both is an exact solution to the constraints of quantum gravity and has a semiclassical limit which is deSitter spacetime. The long wavelength excitations of this state are studied and are shown to reproduce both gravitons and, when matter is included, quantum field theory on deSitter spacetime. Furthermore, one may derive directly from the WheelerdeWitt equation corrections to the energymomentum relations for matter fields of the form E 2 = p 2 +m 2 +αlPlE 3 +... where α is a computable dimensionless constant. This may lead in the next few years to experimental tests of the theory. To study the excitations of the Kodama state exactly requires the use of the spin network representation, which is quantum deformed due to the cosmological constant. The theory may be developed within a single horizon, and the boundary states described exactly in terms of a boundary ChernSimons theory. The Bekenstein bound is recovered and the N bound of Banks is given a background independent explanation. The paper is written as an introduction to loop quantum gravity, requiring no prior knowledge of the subject. The deep relationship between quantum gravity and topological field theory is stressed throughout.
and Category: is quantum gravity algebraic
 Journal of Mathematical Physics
, 1995
"... ABSTRACT: We investigate the possibility that the quantum theory of gravity could be constructed discretely using algebraic methods. The algebraic tools are similar to ones used in constructing Topological Quantum Field theories. The algebraic structures are related to ideas about the reinterpretati ..."
Abstract

Cited by 57 (3 self)
 Add to MetaCart
(Show Context)
ABSTRACT: We investigate the possibility that the quantum theory of gravity could be constructed discretely using algebraic methods. The algebraic tools are similar to ones used in constructing Topological Quantum Field theories. The algebraic structures are related to ideas about the reinterpretation of quantum mechanics in a general relativistic context. I.