Results 1  10
of
72
The Quadratic Assignment Problem
 TO APPEAR IN THE HANDBOOK OF COMBINATORIAL OPTIMIZATION
"... This paper aims at describing the state of the art on quadratic assignment problems (QAPs). It discusses the most important developments in all aspects of the QAP such as linearizations, QAP polyhedra, algorithms to solve the problem to optimality, heuristics, polynomially solvable special cases, an ..."
Abstract

Cited by 182 (3 self)
 Add to MetaCart
This paper aims at describing the state of the art on quadratic assignment problems (QAPs). It discusses the most important developments in all aspects of the QAP such as linearizations, QAP polyhedra, algorithms to solve the problem to optimality, heuristics, polynomially solvable special cases, and asymptotic behavior. Moreover, it also considers problems related to the QAP, e.g. the biquadratic assignment problem, and discusses the relationship between the QAP and other well known combinatorial optimization problems, e.g. the traveling salesman problem, the graph partitioning problem, etc.
ATabu search heuristic for the vehicle routing problem with soft time windows
 Transportation science
, 1997
"... Centre de recherche sur les transports — Publication CRT9584 Département d’informatique et de recherche opérationnelle — Publication #1012 ..."
Abstract

Cited by 155 (13 self)
 Add to MetaCart
Centre de recherche sur les transports — Publication CRT9584 Département d’informatique et de recherche opérationnelle — Publication #1012
Very LargeScale Neighborhood Search for the Quadratic Assignment Problem
 DISCRETE APPLIED MATHEMATICS
, 2002
"... The Quadratic Assignment Problem (QAP) consists of assigning n facilities to n locations so as to minimize the total weighted cost of interactions between facilities. The QAP arises in many diverse settings, is known to be NPhard, and can be solved to optimality only for fairly small size instances ..."
Abstract

Cited by 148 (13 self)
 Add to MetaCart
The Quadratic Assignment Problem (QAP) consists of assigning n facilities to n locations so as to minimize the total weighted cost of interactions between facilities. The QAP arises in many diverse settings, is known to be NPhard, and can be solved to optimality only for fairly small size instances (typically, n < 25). Neighborhood search algorithms are the most popular heuristic algorithms to solve larger size instances of the QAP. The most extensively used neighborhood structure for the QAP is the 2exchange neighborhood. This neighborhood is obtained by swapping the locations of two facilities and thus has size O(n²). Previous efforts to explore larger size neighborhoods (such as 3exchange or 4exchange neighborhoods) were not very successful, as it took too long to evaluate the larger set of neighbors. In this paper, we propose very largescale neighborhood (VLSN) search algorithms where the size of the neighborhood is very large and we propose a novel search procedure to heuristically enumerate good neighbors. Our search procedure relies on the concept of improvement graph which allows us to evaluate neighbors much faster than the existing methods. We present extensive computational results of our algorithms on standard benchmark instances. These investigations reveal that very largescale neighborhood search algorithms give consistently better solutions compared the popular 2exchange neighborhood algorithms considering both the solution time and solution accuracy.
The Quadratic Assignment Problem: A Survey and Recent Developments
 In Proceedings of the DIMACS Workshop on Quadratic Assignment Problems, volume 16 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science
, 1994
"... . Quadratic Assignment Problems model many applications in diverse areas such as operations research, parallel and distributed computing, and combinatorial data analysis. In this paper we survey some of the most important techniques, applications, and methods regarding the quadratic assignment probl ..."
Abstract

Cited by 114 (16 self)
 Add to MetaCart
(Show Context)
. Quadratic Assignment Problems model many applications in diverse areas such as operations research, parallel and distributed computing, and combinatorial data analysis. In this paper we survey some of the most important techniques, applications, and methods regarding the quadratic assignment problem. We focus our attention on recent developments. 1. Introduction Given a set N = f1; 2; : : : ; ng and n \Theta n matrices F = (f ij ) and D = (d kl ), the quadratic assignment problem (QAP) can be stated as follows: min p2\Pi N n X i=1 n X j=1 f ij d p(i)p(j) + n X i=1 c ip(i) ; where \Pi N is the set of all permutations of N . One of the major applications of the QAP is in location theory where the matrix F = (f ij ) is the flow matrix, i.e. f ij is the flow of materials from facility i to facility j, and D = (d kl ) is the distance matrix, i.e. d kl represents the distance from location k to location l [62, 67, 137]. The cost of simultaneously assigning facility i to locat...
An Ant Colony System Hybridized With A New Local Search For The Sequential Ordering Problem
, 2000
"... We present a new local optimizer called SOP3exchange for the sequential ordering problem that extends a local search for the traveling salesman problem to handle multiple constraints directly without increasing computational complexity. An algorithm that combines the SOP3exchange with an Ant Col ..."
Abstract

Cited by 59 (13 self)
 Add to MetaCart
We present a new local optimizer called SOP3exchange for the sequential ordering problem that extends a local search for the traveling salesman problem to handle multiple constraints directly without increasing computational complexity. An algorithm that combines the SOP3exchange with an Ant Colony Optimization algorithm is described and we present experimental evidence that the resulting algorithm is more effective than existing methods for the problem. The bestknown results for many of a standard test set of 22 problems are improved using the SOP3exchange with our Ant Colony Optimization algorithm or in combination with the MPO/AI algorithm (Chen and Smith 1996).
A Scatter Search Based Approach for the Quadratic Assignment Problem
, 1997
"... In this report, we are mainly interested in Scatter Search which is an evolutionary heuristic, proposed two decades ago, that uses linear combination of a population subset to create new solutions. A special operator is used to ensure their feasibility and to improve their quality. We propose hereaf ..."
Abstract

Cited by 43 (2 self)
 Add to MetaCart
In this report, we are mainly interested in Scatter Search which is an evolutionary heuristic, proposed two decades ago, that uses linear combination of a population subset to create new solutions. A special operator is used to ensure their feasibility and to improve their quality. We propose hereafter a Scatter Search approach to the Quadratic Assignment Problem (QAP) problem. The basic method is extended with intensification and diversification stages and we present a procedure to generate good scattered initial solutions.
Computing lower bounds for the quadratic assignment problem with an interior point algorithm for linear programming
 Operations Research
, 1995
"... A typical example of the quadratic assignment problem (QAP) is the facility location problem, in which a set of n facilities are to be assigned, at minimum cost, to an equal number of locations. Between each pair of facilities, there is a given amount of flow, contributing a cost equal to the produc ..."
Abstract

Cited by 36 (4 self)
 Add to MetaCart
(Show Context)
A typical example of the quadratic assignment problem (QAP) is the facility location problem, in which a set of n facilities are to be assigned, at minimum cost, to an equal number of locations. Between each pair of facilities, there is a given amount of flow, contributing a cost equal to the product of the flow and the distance between locations to which the facilities are assigned. Proving optimality of solutions to quadratic assignment problems has been limited to instances of small dimension (n less than or equal to 20), in part because known lower bounds for the QAP are of poor quality. In this paper, we compute lower bounds for a wide range of quadratic assignment problems using a linear programmingbased lower bound studied by Drezner (1994). On the majority of quadratic assignment problems tested, the computed lower bound is the new best known lower bound. In 87 percent of the instances, we produced the best known lower bound. On several instances, including some of dimension n equal to 20, the lower bound is tight. The linear programs, which can be large even for moderate values of n, are solved with an interior point code that uses a preconditioned conjugate gradient algorithm to compute the directions taken at each iteration by the interior point algorithm. Attempts to
Selected Topics on Assignment Problems
, 1999
"... We survey recent developments in the fields of bipartite matchings, linear sum assignment and bottleneck assignment problems and applications, multidimensional assignment problems, quadratic assignment problems, in particular lower bounds, special cases and asymptotic results, biquadratic and co ..."
Abstract

Cited by 34 (1 self)
 Add to MetaCart
We survey recent developments in the fields of bipartite matchings, linear sum assignment and bottleneck assignment problems and applications, multidimensional assignment problems, quadratic assignment problems, in particular lower bounds, special cases and asymptotic results, biquadratic and communication assignment problems.