Results 1  10
of
52
Constraint Networks
, 1992
"... Constraintbased reasoning is a paradigm for formulating knowledge as a set of constraints without specifying the method by which these constraints are to be satisfied. A variety of techniques have been developed for finding partial or complete solutions for different kinds of constraint expression ..."
Abstract

Cited by 1149 (43 self)
 Add to MetaCart
Constraintbased reasoning is a paradigm for formulating knowledge as a set of constraints without specifying the method by which these constraints are to be satisfied. A variety of techniques have been developed for finding partial or complete solutions for different kinds of constraint expressions. These have been successfully applied to diverse tasks such as design, diagnosis, truth maintenance, scheduling, spatiotemporal reasoning, logic programming and user interface. Constraint networks are graphical representations used to guide strategies for solving constraint satisfaction problems (CSPs).
Algorithms for ConstraintSatisfaction Problems: A Survey
, 1992
"... A large number of problems in AI and other areas of computer science can be viewed as special cases of the constraintsatisfaction problem. Some examples are machine vision, belief maintenance, scheduling, temporal reasoning, graph problems, floor plan design, the planning of genetic experiments, an ..."
Abstract

Cited by 447 (0 self)
 Add to MetaCart
A large number of problems in AI and other areas of computer science can be viewed as special cases of the constraintsatisfaction problem. Some examples are machine vision, belief maintenance, scheduling, temporal reasoning, graph problems, floor plan design, the planning of genetic experiments, and the satisfiability problem. A number of different approaches have been developed for solving these problems. Some of them use constraint propagation to simplify the original problem. Others use backtracking to directly search for possible solutions. Some are a combination of these two techniques. This article overviews many of these approaches in a tutorial fashion.
Algorithms for the Satisfiability (SAT) Problem: A Survey
 DIMACS Series in Discrete Mathematics and Theoretical Computer Science
, 1996
"... . The satisfiability (SAT) problem is a core problem in mathematical logic and computing theory. In practice, SAT is fundamental in solving many problems in automated reasoning, computeraided design, computeraided manufacturing, machine vision, database, robotics, integrated circuit design, compute ..."
Abstract

Cited by 144 (3 self)
 Add to MetaCart
(Show Context)
. The satisfiability (SAT) problem is a core problem in mathematical logic and computing theory. In practice, SAT is fundamental in solving many problems in automated reasoning, computeraided design, computeraided manufacturing, machine vision, database, robotics, integrated circuit design, computer architecture design, and computer network design. Traditional methods treat SAT as a discrete, constrained decision problem. In recent years, many optimization methods, parallel algorithms, and practical techniques have been developed for solving SAT. In this survey, we present a general framework (an algorithm space) that integrates existing SAT algorithms into a unified perspective. We describe sequential and parallel SAT algorithms including variable splitting, resolution, local search, global optimization, mathematical programming, and practical SAT algorithms. We give performance evaluation of some existing SAT algorithms. Finally, we provide a set of practical applications of the sat...
Truth Maintenance
, 1990
"... General purpose truth maintenance systems have received considerable attention in the past few years. This paper discusses the functionality of truth maintenance systems and compares various existing algorithms. Applications and directions for future research are also discussed. Introduction In 197 ..."
Abstract

Cited by 136 (3 self)
 Add to MetaCart
General purpose truth maintenance systems have received considerable attention in the past few years. This paper discusses the functionality of truth maintenance systems and compares various existing algorithms. Applications and directions for future research are also discussed. Introduction In 1978 Jon Doyle wrote a masters thesis at the MIT AI Laboratory entitled "Truth Maintenance Systems for Problem Solving" [ Doyle, 1979 ] . In this thesis Doyle described an independent module called a truth maintenance system, or TMS, which maintained beliefs for general problem solving systems. In the twelve years since the appearance of Doyle's TMS a large body of literature has accumulated on truth maintenance. The seminal idea appears not to have been any particular technical mechanism but rather the general concept of an independent module for truth (or belief) maintenance. All truth maintenance systems manipulate proposition symbols and relationships between proposition symbols. I will use...
Unification: A multidisciplinary survey
 ACM Computing Surveys
, 1989
"... The unification problem and several variants are presented. Various algorithms and data structures are discussed. Research on unification arising in several areas of computer science is surveyed, these areas include theorem proving, logic programming, and natural language processing. Sections of the ..."
Abstract

Cited by 124 (1 self)
 Add to MetaCart
The unification problem and several variants are presented. Various algorithms and data structures are discussed. Research on unification arising in several areas of computer science is surveyed, these areas include theorem proving, logic programming, and natural language processing. Sections of the paper include examples that highlight particular uses
DeadEnd Driven Learning
, 1994
"... The paper evaluates the effectiveness of learning for speeding up the solution of constraint satisfaction problems. It extends previous work (Dechter 1990) by introducing a new and powerful variant of learning and by presenting an extensive empirical study on much larger and more difficult problem i ..."
Abstract

Cited by 83 (5 self)
 Add to MetaCart
The paper evaluates the effectiveness of learning for speeding up the solution of constraint satisfaction problems. It extends previous work (Dechter 1990) by introducing a new and powerful variant of learning and by presenting an extensive empirical study on much larger and more difficult problem instances. Our results show that learning can speed up backjumping when using either a fixed or dynamic variable ordering. However, the improvement with a dynamic variable ordering is not as great, and for some classes of problems learning is helpful only when a limit is placed on the size of new constraints learned.
Intelligent Backtracking On Constraint Satisfaction Problems: Experimental And Theoretical Results
, 1995
"... The Constraint Satisfaction Problem is a type of combinatorial search problem of much interest in Artificial Intelligence and Operations Research. The simplest algorithm for solving such a problem is chronological backtracking, but this method suffers from a malady known as "thrashing," in ..."
Abstract

Cited by 54 (0 self)
 Add to MetaCart
The Constraint Satisfaction Problem is a type of combinatorial search problem of much interest in Artificial Intelligence and Operations Research. The simplest algorithm for solving such a problem is chronological backtracking, but this method suffers from a malady known as "thrashing," in which essentially the same subproblems end up being solved repeatedly. Intelligent backtracking algorithms, such as backjumping and dependencydirected backtracking, were designed to address this difficulty, but the exact utility and range of applicability of these techniques have not been fully explored. This dissertation describes an experimental and theoretical investigation into the power of these intelligent backtracking algorithms. We compare the empirical performance of several such algorithms on a range of problem distributions. We show that the more sophisticated algorithms are especially useful on those problems with a small number of constraints that happen to be difficult for chronologica...
Functional computations in logic programs
 ACM Transactions on Programming Languages and Systems
, 1989
"... Abstract: While the ability to simulate nondeterminism and compute multiple solutions for a single query is a powerful and attractive feature of logic programming languages, it is expensive in both time and space. Since programs in such languages are very often functional, i.e. do not produce more t ..."
Abstract

Cited by 53 (11 self)
 Add to MetaCart
(Show Context)
Abstract: While the ability to simulate nondeterminism and compute multiple solutions for a single query is a powerful and attractive feature of logic programming languages, it is expensive in both time and space. Since programs in such languages are very often functional, i.e. do not produce more than one distinct solution for a single input, this overhead is especially undesirable. This paper describes how programs may be analyzed statically to determine which literals and predicates are functional, and how the program may then be optimized using this information. Our notion of ‘‘functionality’ ’ subsumes the notion of ‘‘determinacy’ ’ that has been considered by various researchers. Our algorithm is less reliant on language features such as the cut, and thus extends more easily to parallel execution strategies, than others that have been proposed.