Results 1  10
of
802
No Free Lunch Theorems for Optimization
, 1997
"... A framework is developed to explore the connection between effective optimization algorithms and the problems they are solving. A number of “no free lunch ” (NFL) theorems are presented which establish that for any algorithm, any elevated performance over one class of problems is offset by performan ..."
Abstract

Cited by 961 (10 self)
 Add to MetaCart
A framework is developed to explore the connection between effective optimization algorithms and the problems they are solving. A number of “no free lunch ” (NFL) theorems are presented which establish that for any algorithm, any elevated performance over one class of problems is offset by performance over another class. These theorems result in a geometric interpretation of what it means for an algorithm to be well suited to an optimization problem. Applications of the NFL theorems to informationtheoretic aspects of optimization and benchmark measures of performance are also presented. Other issues addressed include timevarying optimization problems and a priori “headtohead” minimax distinctions between optimization algorithms, distinctions that result despite the NFL theorems’ enforcing of a type of uniformity over all algorithms.
Greedy Randomized Adaptive Search Procedures
, 2002
"... GRASP is a multistart metaheuristic for combinatorial problems, in which each iteration consists basically of two phases: construction and local search. The construction phase builds a feasible solution, whose neighborhood is investigated until a local minimum is found during the local search phas ..."
Abstract

Cited by 648 (82 self)
 Add to MetaCart
GRASP is a multistart metaheuristic for combinatorial problems, in which each iteration consists basically of two phases: construction and local search. The construction phase builds a feasible solution, whose neighborhood is investigated until a local minimum is found during the local search phase. The best overall solution is kept as the result. In this chapter, we first describe the basic components of GRASP. Successful implementation techniques and parameter tuning strategies are discussed and illustrated by numerical results obtained for different applications. Enhanced or alternative solution construction mechanisms and techniques to speed up the search are also described: Reactive GRASP, cost perturbations, bias functions, memory and learning, local search on partially constructed solutions, hashing, and filtering. We also discuss in detail implementation strategies of memorybased intensification and postoptimization techniques using pathrelinking. Hybridizations with other metaheuristics, parallelization strategies, and applications are also reviewed.
Variable Neighborhood Search
, 1997
"... Variable neighborhood search (VNS) is a recent metaheuristic for solving combinatorial and global optimization problems whose basic idea is systematic change of neighborhood within a local search. In this survey paper we present basic rules of VNS and some of its extensions. Moreover, applications a ..."
Abstract

Cited by 354 (26 self)
 Add to MetaCart
Variable neighborhood search (VNS) is a recent metaheuristic for solving combinatorial and global optimization problems whose basic idea is systematic change of neighborhood within a local search. In this survey paper we present basic rules of VNS and some of its extensions. Moreover, applications are briefly summarized. They comprise heuristic solution of a variety of optimization problems, ways to accelerate exact algorithms and to analyze heuristic solution processes, as well as computerassisted discovery of conjectures in graph theory.
A Comparison of Eleven Static Heuristics for Mapping a Class of Independent Tasks onto Heterogeneous Distributed Computing Systems
, 2001
"... this paper is organized as follows. Section 2 defines the computational environment parameters that were varied in the simulations. Descriptions of the 11 mapping heuristics are found in Section 3. Section 4 examines selected results from the simulation study. A list of implementation parameters and ..."
Abstract

Cited by 339 (55 self)
 Add to MetaCart
this paper is organized as follows. Section 2 defines the computational environment parameters that were varied in the simulations. Descriptions of the 11 mapping heuristics are found in Section 3. Section 4 examines selected results from the simulation study. A list of implementation parameters and procedures that could be varied for each heuristic is presented in Section 5
Metaheuristics in combinatorial optimization: Overview and conceptual comparison
 ACM COMPUTING SURVEYS
, 2003
"... The field of metaheuristics for the application to combinatorial optimization problems is a rapidly growing field of research. This is due to the importance of combinatorial optimization problems for the scientific as well as the industrial world. We give a survey of the nowadays most important meta ..."
Abstract

Cited by 315 (17 self)
 Add to MetaCart
The field of metaheuristics for the application to combinatorial optimization problems is a rapidly growing field of research. This is due to the importance of combinatorial optimization problems for the scientific as well as the industrial world. We give a survey of the nowadays most important metaheuristics from a conceptual point of view. We outline the different components and concepts that are used in the different metaheuristics in order to analyze their similarities and differences. Two very important concepts in metaheuristics are intensification and diversification. These are the two forces that largely determine the behaviour of a metaheuristic. They are in some way contrary but also complementary to each other. We introduce a framework, that we call the I&D frame, in order to put different intensification and diversification components into relation with each other. Outlining the advantages and disadvantages of different metaheuristic approaches we conclude by pointing out the importance of hybridization of metaheuristics as well as the integration of metaheuristics and other methods for optimization.
Local Search Strategies for Satisfiability Testing
 DIMACS SERIES IN DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE
, 1995
"... It has recently been shown that local search is surprisingly good at finding satisfying assignments for certain classes of CNF formulas [24]. In this paper we demonstrate that the power of local search for satisfiability testing can be further enhanced by employinga new strategy, called "mixed ..."
Abstract

Cited by 311 (28 self)
 Add to MetaCart
It has recently been shown that local search is surprisingly good at finding satisfying assignments for certain classes of CNF formulas [24]. In this paper we demonstrate that the power of local search for satisfiability testing can be further enhanced by employinga new strategy, called "mixed random walk", for escaping from local minima. We present experimental results showing how this strategy allows us to handle formulas that are substantially larger than those that can be solved with basic local search. We also present a detailed comparison of our random walk strategy with simulated annealing. Our results show that mixed random walk is the superior strategy on several classes of computationally difficult problem instances. Finally, we present results demonstrating the effectiveness of local search with walk for solving circuit synthesis and diagnosis problems.
Variable neighborhood search: Principles and applications
, 2001
"... Systematic change of neighborhood within a possibly randomized local search algorithm yields a simple and effective metaheuristic for combinatorial and global optimization, called variable neighborhood search (VNS). We present a basic scheme for this purpose, which can easily be implemented using an ..."
Abstract

Cited by 200 (15 self)
 Add to MetaCart
Systematic change of neighborhood within a possibly randomized local search algorithm yields a simple and effective metaheuristic for combinatorial and global optimization, called variable neighborhood search (VNS). We present a basic scheme for this purpose, which can easily be implemented using any local search algorithm as a subroutine. Its effectiveness is illustrated by solving several classical combinatorial or global optimization problems. Moreover, several extensions are proposed for solving large problem instances: using VNS within the successive approximation method yields a twolevel VNS, called variable neighborhood decomposition search (VNDS); modifying the basic scheme to explore easily valleys far from the incumbent solution yields an efficient skewed VNS (SVNS) heuristic. Finally, we show how to stabilize column generation algorithms with help of VNS and discuss various ways to use VNS in graph theory, i.e., to suggest, disprove or give hints on how to prove conjectures, an area where metaheuristics do not appear
Evidence for Invariants in Local Search
 IN PROCEEDINGS OF AAAI97
, 1997
"... It is well known that the performance of a stochastic local search procedure depends upon the setting of its noise parameter, and that the optimal setting varies with the problem distribution. It is therefore desirable to develop general priniciples for tuning the procedures. We present two statisti ..."
Abstract

Cited by 195 (10 self)
 Add to MetaCart
It is well known that the performance of a stochastic local search procedure depends upon the setting of its noise parameter, and that the optimal setting varies with the problem distribution. It is therefore desirable to develop general priniciples for tuning the procedures. We present two statistical measures of the local search process that allow one to quickly find the optimal noise settings. These properties are independent of the fine details of the local search strategies, and appear to be relatively independent of the structure of the problem domains. We applied these principles to the problem of evaluating new search heuristics, and discovered two promising new strategies.
A Survey of Automated Timetabling
, 1999
"... The timetabling problem consists in scheduling a sequence of lectures between teachers and students in a prefixed period of time (typically a week), satisfying a set of constraints of various types. A large number of variants of the timetabling problem have been proposed in the literature, which d ..."
Abstract

Cited by 194 (16 self)
 Add to MetaCart
The timetabling problem consists in scheduling a sequence of lectures between teachers and students in a prefixed period of time (typically a week), satisfying a set of constraints of various types. A large number of variants of the timetabling problem have been proposed in the literature, which differ from each other based on the type of institution involved (university or school) and the type of constraints. This problem, that has been traditionally considered in the operational research field, has recently been tackled with techniques belonging also to Artificial Intelligence (e.g., genetic algorithms, tabu search, and constraint satisfaction). In this paper, we survey the various formulations of the problem, and the techniques and algorithms used for its solution.
Iterated local search
 Handbook of Metaheuristics, volume 57 of International Series in Operations Research and Management Science
, 2002
"... Iterated Local Search has many of the desirable features of a metaheuristic: it is simple, easy to implement, robust, and highly effective. The essential idea of Iterated Local Search lies in focusing the search not on the full space of solutions but on a smaller subspace defined by the solutions th ..."
Abstract

Cited by 173 (15 self)
 Add to MetaCart
(Show Context)
Iterated Local Search has many of the desirable features of a metaheuristic: it is simple, easy to implement, robust, and highly effective. The essential idea of Iterated Local Search lies in focusing the search not on the full space of solutions but on a smaller subspace defined by the solutions that are locally optimal for a given optimization engine. The success of Iterated Local Search lies in the biased sampling of this set of local optima. How effective this approach turns out to be depends mainly on the choice of the local search, the perturbations, and the acceptance criterion. So far, in spite of its conceptual simplicity, it has lead to a number of stateoftheart results without the use of too much problemspecific knowledge. But with further work so that the different modules are well adapted to the problem at hand, Iterated Local Search can often become a competitive or even state of the art algorithm. The purpose of this review is both to give a detailed description of this metaheuristic and to show where it stands in terms of performance. O.M. acknowledges support from the Institut Universitaire de France. This work was partially supported by the “Metaheuristics Network”, a Research Training Network funded by the Improving Human Potential programme of the CEC, grant HPRNCT199900106. The information provided is the sole responsibility of the authors and does not reflect the Community’s opinion. The Community is not responsible for any use that might be made of data appearing in this publication. 1 1