Results 1 - 10
of
559
Distance metric learning for large margin nearest neighbor classification
- In NIPS
, 2006
"... We show how to learn a Mahanalobis distance metric for k-nearest neighbor (kNN) classification by semidefinite programming. The metric is trained with the goal that the k-nearest neighbors always belong to the same class while examples from different classes are separated by a large margin. On seven ..."
Abstract
-
Cited by 695 (14 self)
- Add to MetaCart
(Show Context)
We show how to learn a Mahanalobis distance metric for k-nearest neighbor (kNN) classification by semidefinite programming. The metric is trained with the goal that the k-nearest neighbors always belong to the same class while examples from different classes are separated by a large margin. On seven data sets of varying size and difficulty, we find that metrics trained in this way lead to significant improvements in kNN classification—for example, achieving a test error rate of 1.3 % on the MNIST handwritten digits. As in support vector machines (SVMs), the learning problem reduces to a convex optimization based on the hinge loss. Unlike learning in SVMs, however, our framework requires no modification or extension for problems in multiway (as opposed to binary) classification. 1
Large margin methods for structured and interdependent output variables
- JOURNAL OF MACHINE LEARNING RESEARCH
, 2005
"... Learning general functional dependencies between arbitrary input and output spaces is one of the key challenges in computational intelligence. While recent progress in machine learning has mainly focused on designing flexible and powerful input representations, this paper addresses the complementary ..."
Abstract
-
Cited by 624 (12 self)
- Add to MetaCart
Learning general functional dependencies between arbitrary input and output spaces is one of the key challenges in computational intelligence. While recent progress in machine learning has mainly focused on designing flexible and powerful input representations, this paper addresses the complementary issue of designing classification algorithms that can deal with more complex outputs, such as trees, sequences, or sets. More generally, we consider problems involving multiple dependent output variables, structured output spaces, and classification problems with class attributes. In order to accomplish this, we propose to appropriately generalize the well-known notion of a separation margin and derive a corresponding maximum-margin formulation. While this leads to a quadratic program with a potentially prohibitive, i.e. exponential, number of constraints, we present a cutting plane algorithm that solves the optimization problem in polynomial time for a large class of problems. The proposed method has important applications in areas such as computational biology, natural language processing, information retrieval/extraction, and optical character recognition. Experiments from various domains involving different types of output spaces emphasize the breadth and generality of our approach.
Max-margin Markov networks
, 2003
"... In typical classification tasks, we seek a function which assigns a label to a single object. Kernel-based approaches, such as support vector machines (SVMs), which maximize the margin of confidence of the classifier, are the method of choice for many such tasks. Their popularity stems both from the ..."
Abstract
-
Cited by 604 (15 self)
- Add to MetaCart
In typical classification tasks, we seek a function which assigns a label to a single object. Kernel-based approaches, such as support vector machines (SVMs), which maximize the margin of confidence of the classifier, are the method of choice for many such tasks. Their popularity stems both from the ability to use high-dimensional feature spaces, and from their strong theoretical guarantees. However, many real-world tasks involve sequential, spatial, or structured data, where multiple labels must be assigned. Existing kernel-based methods ignore structure in the problem, assigning labels independently to each object, losing much useful information. Conversely, probabilistic graphical models, such as Markov networks, can represent correlations between labels, by exploiting problem structure, but cannot handle high-dimensional feature spaces, and lack strong theoretical generalization guarantees. In this paper, we present a new framework that combines the advantages of both approaches: Maximum margin Markov (M 3) networks incorporate both kernels, which efficiently deal with high-dimensional features, and the ability to capture correlations in structured data. We present an efficient algorithm for learning M 3 networks based on a compact quadratic program formulation. We provide a new theoretical bound for generalization in structured domains. Experiments on the task of handwritten character recognition and collective hypertext classification demonstrate very significant gains over previous approaches. 1
Support vector machine learning for interdependent and structured output spaces
- In ICML
, 2004
"... Learning general functional dependencies is one of the main goals in machine learning. Recent progress in kernel-based methods has focused on designing flexible and powerful input representations. This paper addresses the complementary issue of problems involving complex outputs suchas multiple depe ..."
Abstract
-
Cited by 450 (20 self)
- Add to MetaCart
(Show Context)
Learning general functional dependencies is one of the main goals in machine learning. Recent progress in kernel-based methods has focused on designing flexible and powerful input representations. This paper addresses the complementary issue of problems involving complex outputs suchas multiple dependent output variables and structured output spaces. We propose to generalize multiclass Support Vector Machine learning in a formulation that involves features extracted jointly from inputs and outputs. The resulting optimization problem is solved efficiently by a cutting plane algorithm that exploits the sparseness and structural decomposition of the problem. We demonstrate the versatility and effectiveness of our method on problems ranging from supervised grammar learning and named-entity recognition, to taxonomic text classification and sequence alignment. 1.
Online passive-aggressive algorithms
- JMLR
, 2006
"... We present a unified view for online classification, regression, and uniclass problems. This view leads to a single algorithmic framework for the three problems. We prove worst case loss bounds for various algorithms for both the realizable case and the non-realizable case. The end result is new alg ..."
Abstract
-
Cited by 435 (24 self)
- Add to MetaCart
We present a unified view for online classification, regression, and uniclass problems. This view leads to a single algorithmic framework for the three problems. We prove worst case loss bounds for various algorithms for both the realizable case and the non-realizable case. The end result is new algorithms and accompanying loss bounds for hinge-loss regression and uniclass. We also get refined loss bounds for previously studied classification algorithms.
Svm-knn: Discriminative nearest neighbor classification for visual category recognition
- in CVPR
, 2006
"... We consider visual category recognition in the framework of measuring similarities, or equivalently perceptual distances, to prototype examples of categories. This approach is quite flexible, and permits recognition based on color, texture, and particularly shape, in a homogeneous framework. While n ..."
Abstract
-
Cited by 342 (10 self)
- Add to MetaCart
(Show Context)
We consider visual category recognition in the framework of measuring similarities, or equivalently perceptual distances, to prototype examples of categories. This approach is quite flexible, and permits recognition based on color, texture, and particularly shape, in a homogeneous framework. While nearest neighbor classifiers are natural in this setting, they suffer from the problem of high variance (in bias-variance decomposition) in the case of limited sampling. Alternatively, one could use support vector machines but they involve time-consuming optimization and computation of pairwise distances. We propose a hybrid of these two methods which deals naturally with the multiclass setting, has reasonable computational complexity both in training and at run time, and yields excellent results in practice. The basic idea is to find close neighbors to a query sample and train a local support vector machine that preserves the distance function on the collection of neighbors. Our method can be applied to large, multiclass data sets for which it outperforms nearest neighbor and support vector machines, and remains efficient when the problem becomes intractable for support vector machines. A wide variety of distance functions can be used and our experiments show state-of-the-art performance on a number of benchmark data sets for shape and texture classification (MNIST, USPS, CUReT) and object recognition (Caltech-101). On Caltech-101 we achieved a correct classification rate of 59.05%(±0.56%) at 15 training images per class, and 66.23%(±0.48%) at 30 training images. 1.
Ultraconservative Online Algorithms for Multiclass Problems
- Journal of Machine Learning Research
, 2001
"... In this paper we study online classification algorithms for multiclass problems in the mistake bound model. The hypotheses we use maintain one prototype vector per class. Given an input instance, a multiclass hypothesis computes a similarity-score between each prototype and the input instance and th ..."
Abstract
-
Cited by 320 (21 self)
- Add to MetaCart
In this paper we study online classification algorithms for multiclass problems in the mistake bound model. The hypotheses we use maintain one prototype vector per class. Given an input instance, a multiclass hypothesis computes a similarity-score between each prototype and the input instance and then sets the predicted label to be the index of the prototype achieving the highest similarity. To design and analyze the learning algorithms in this paper we introduce the notion of ultraconservativeness. Ultraconservative algorithms are algorithms that update only the prototypes attaining similarity-scores which are higher than the score of the correct label's prototype. We start by describing a family of additive ultraconservative algorithms where each algorithm in the family updates its prototypes by finding a feasible solution for a set of linear constraints that depend on the instantaneous similarity-scores. We then discuss a specific online algorithm that seeks a set of prototypes which have a small norm. The resulting algorithm, which we term MIRA (for Margin Infused Relaxed Algorithm) is ultraconservative as well. We derive mistake bounds for all the algorithms and provide further analysis of MIRA using a generalized notion of the margin for multiclass problems.
In defense of one-vs-all classification
- Journal of Machine Learning Research
, 2004
"... Editor: John Shawe-Taylor We consider the problem of multiclass classification. Our main thesis is that a simple “one-vs-all ” scheme is as accurate as any other approach, assuming that the underlying binary classifiers are well-tuned regularized classifiers such as support vector machines. This the ..."
Abstract
-
Cited by 318 (0 self)
- Add to MetaCart
Editor: John Shawe-Taylor We consider the problem of multiclass classification. Our main thesis is that a simple “one-vs-all ” scheme is as accurate as any other approach, assuming that the underlying binary classifiers are well-tuned regularized classifiers such as support vector machines. This thesis is interesting in that it disagrees with a large body of recent published work on multiclass classification. We support our position by means of a critical review of the existing literature, a substantial collection of carefully controlled experimental work, and theoretical arguments.
Hierarchical document categorization with support vector machines
- IN: PROCEEDINGS OF THE 13TH CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT
, 2004
"... Automatically categorizing documents into pre-defined topic hierarchies or taxonomies is a crucial step in knowledge and content management. Standard machine learning techniques like Support Vector Machines and related large margin methods have been successfully applied for this task, albeit the fac ..."
Abstract
-
Cited by 161 (4 self)
- Add to MetaCart
(Show Context)
Automatically categorizing documents into pre-defined topic hierarchies or taxonomies is a crucial step in knowledge and content management. Standard machine learning techniques like Support Vector Machines and related large margin methods have been successfully applied for this task, albeit the fact that they ignore the inter-class relationships. In this paper, we propose a novel hierarchical classification method that generalizes Support Vector Machine learning and that is based on discriminant functions that are structured in a way that mirrors the class hierarchy. Our method can work with arbitrary, not necessarily singly connected taxonomies and can deal with task-specific loss functions. All parameters are learned jointly by optimizing a common objective function corresponding to a regularized upper bound on the empirical loss. We present experimental results on the WIPO-alpha patent collection to show the competitiveness of our approach.
L.: Modeling mutual context of object and human pose in human-object interaction activities
, 2010
"... Detecting objects in cluttered scenes and estimating articulated human body parts are two challenging problems in computer vision. The difficulty is particularly pronounced in activities involving human-object interactions (e.g. playing tennis), where the relevant object tends to be small or only pa ..."
Abstract
-
Cited by 155 (5 self)
- Add to MetaCart
(Show Context)
Detecting objects in cluttered scenes and estimating articulated human body parts are two challenging problems in computer vision. The difficulty is particularly pronounced in activities involving human-object interactions (e.g. playing tennis), where the relevant object tends to be small or only partially visible, and the human body parts are often self-occluded. We observe, however, that objects and human poses can serve as mutual context to each other – recognizing one facilitates the recognition of the other. In this paper we propose a new random field model to encode the mutual context of objects and human poses in human-object interaction activities. We then cast the model learning task as a structure learning problem, of which the structural connectivity between the object, the overall human pose, and different body parts are estimated through a structure search approach, and the parameters of the model are estimated by a new max-margin algorithm. On a sports data set of six classes of human-object interactions [12], we show that our mutual context model significantly outperforms state-of-theart in detecting very difficult objects and human poses. 1.