Results 1 - 10
of
727
Solving multiclass learning problems via error-correcting output codes
- JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH
, 1995
"... Multiclass learning problems involve nding a de nition for an unknown function f(x) whose range is a discrete set containing k>2values (i.e., k \classes"). The de nition is acquired by studying collections of training examples of the form hx i;f(x i)i. Existing approaches to multiclass l ..."
Abstract
-
Cited by 730 (8 self)
- Add to MetaCart
Multiclass learning problems involve nding a de nition for an unknown function f(x) whose range is a discrete set containing k>2values (i.e., k \classes"). The de nition is acquired by studying collections of training examples of the form hx i;f(x i)i. Existing approaches to multiclass learning problems include direct application of multiclass algorithms such as the decision-tree algorithms C4.5 and CART, application of binary concept learning algorithms to learn individual binary functions for each of the k classes, and application of binary concept learning algorithms with distributed output representations. This paper compares these three approaches to a new technique in which error-correcting codes are employed as a distributed output representation. We show that these output representations improve the generalization performance of both C4.5 and backpropagation on a wide range of multiclass learning tasks. We also demonstrate that this approach is robust with respect to changes in the size of the training sample, the assignment of distributed representations to particular classes, and the application of over tting avoidance techniques such as decision-tree pruning. Finally,we show that|like the other methods|the error-correcting code technique can provide reliable class probability estimates. Taken together, these results demonstrate that error-correcting output codes provide a general-purpose method for improving the performance of inductive learning programs on multiclass problems.
Minimizing conflicts: a heuristic repair method for constraint satisfaction and scheduling problems
- ARTIF. INTELL
, 1992
"... This paper describes a simple heuristic approach to solving large-scale constraint satisfaction and scheduling problems. In this approach one starts with an inconsistent assignment for a set of variables and searches through the space of possible repairs. The search can be guided by a value-orderin ..."
Abstract
-
Cited by 458 (6 self)
- Add to MetaCart
This paper describes a simple heuristic approach to solving large-scale constraint satisfaction and scheduling problems. In this approach one starts with an inconsistent assignment for a set of variables and searches through the space of possible repairs. The search can be guided by a value-ordering heuristic, the min-conflicts heuristic, that attempts to minimize the number of constraint violations after each step. The heuristic can be used with a variety of different search strategies. We demonstrate empirically that on the n-queens problem, a technique based on this approach performs orders of magnitude better than traditional backtracking techniques. We also describe a scheduling application where the approach has been used successfully. A theoretical analysis is presented both to explain why this method works well on certain types of problems and to predict when it is likely to be One of the most promising general approaches for solving combinatorial search problems is to generate an
GSAT and Dynamic Backtracking
- Journal of Artificial Intelligence Research
, 1994
"... There has been substantial recent interest in two new families of search techniques. One family consists of nonsystematic methods such as gsat; the other contains systematic approaches that use a polynomial amount of justification information to prune the search space. This paper introduces a new te ..."
Abstract
-
Cited by 389 (15 self)
- Add to MetaCart
There has been substantial recent interest in two new families of search techniques. One family consists of nonsystematic methods such as gsat; the other contains systematic approaches that use a polynomial amount of justification information to prune the search space. This paper introduces a new technique that combines these two approaches. The algorithm allows substantial freedom of movement in the search space but enough information is retained to ensure the systematicity of the resulting analysis. Bounds are given for the size of the justification database and conditions are presented that guarantee that this database will be polynomial in the size of the problem in question. 1 INTRODUCTION The past few years have seen rapid progress in the development of algorithms for solving constraintsatisfaction problems, or csps. Csps arise naturally in subfields of AI from planning to vision, and examples include propositional theorem proving, map coloring and scheduling problems. The probl...
Operations for Learning with Graphical Models
- Journal of Artificial Intelligence Research
, 1994
"... This paper is a multidisciplinary review of empirical, statistical learning from a graphical model perspective. Well-known examples of graphical models include Bayesian networks, directed graphs representing a Markov chain, and undirected networks representing a Markov field. These graphical models ..."
Abstract
-
Cited by 277 (13 self)
- Add to MetaCart
This paper is a multidisciplinary review of empirical, statistical learning from a graphical model perspective. Well-known examples of graphical models include Bayesian networks, directed graphs representing a Markov chain, and undirected networks representing a Markov field. These graphical models are extended to model data analysis and empirical learning using the notation of plates. Graphical operations for simplifying and manipulating a problem are provided including decomposition, differentiation, and the manipulation of probability models from the exponential family. Two standard algorithm schemas for learning are reviewed in a graphical framework: Gibbs sampling and the expectation maximization algorithm. Using these operations and schemas, some popular algorithms can be synthesized from their graphical specification. This includes versions of linear regression, techniques for feed-forward networks, and learning Gaussian and discrete Bayesian networks from data. The paper conclu...
Hard and Easy Distributions of SAT Problems
, 1992
"... We report results from large-scale experiments in satisfiability testing. As has been observed by others, testing the satisfiability of random formulas often appears surprisingly easy. Here we show that by using the right distribution of instances, and appropriate parameter values, it is possible to ..."
Abstract
-
Cited by 251 (18 self)
- Add to MetaCart
(Show Context)
We report results from large-scale experiments in satisfiability testing. As has been observed by others, testing the satisfiability of random formulas often appears surprisingly easy. Here we show that by using the right distribution of instances, and appropriate parameter values, it is possible to generate random formulas that are hard, that is, for which satisfiability testing is quite difficult. Our results provide a benchmark for the evaluation of satisfiability-testing procedures. Introduction Many computational tasks of interest to AI, to the extent that they can be precisely characterized at all, can be shown to be NP-hard in their most general form. However, there is fundamental disagreement, at least within the AI community, about the implications of this. It is claimed on the one hand that since the performance of algorithms designed to solve NP-hard tasks degrades rapidly with small increases in input size, something will need to be given up to obtain acceptable behavior....
Using CSP look-back techniques to solve real-world SAT instances
, 1997
"... We report on the performance of an enhanced version of the “Davis-Putnam ” (DP) proof procedure for propositional satisfiability (SAT) on large instances derived from realworld problems in planning, scheduling, and circuit diagnosis and synthesis. Our results show that incorporating CSP lookback tec ..."
Abstract
-
Cited by 238 (1 self)
- Add to MetaCart
We report on the performance of an enhanced version of the “Davis-Putnam ” (DP) proof procedure for propositional satisfiability (SAT) on large instances derived from realworld problems in planning, scheduling, and circuit diagnosis and synthesis. Our results show that incorporating CSP lookback techniques-- especially the relatively new technique of relevance-bounded learning-- renders easy many problems which otherwise are beyond DP’s reach. Frequently they make DP, a systematic algorithm, perform as well or better than stochastic SAT algorithms such as GSAT or WSAT. We recommend that such techniques be included as options in implementations of DP, just as they are in systematic algorithms for the more general constraint satisfaction problem.
Experimental Results on the Crossover Point in Satisfiability Problems
- In Proceedings of the Eleventh National Conference on Artificial Intelligence
, 1993
"... Determining whether a propositional theory is satisfiable is a prototypical example of an NPcomplete problem. Further, a large number of problems that occur in knowledge representation, learning, planning, and other areas of AI are essentially satisfiability problems. This paper reports on a series ..."
Abstract
-
Cited by 209 (3 self)
- Add to MetaCart
Determining whether a propositional theory is satisfiable is a prototypical example of an NPcomplete problem. Further, a large number of problems that occur in knowledge representation, learning, planning, and other areas of AI are essentially satisfiability problems. This paper reports on a series of experiments to determine the location of the crossover point --- the point at which half the randomly generated propositional theories with a given number of variables and given number of clauses are satisfiable --- and to assess the relationship of the crossover point to the difficulty of determining satisfiability. We have found empirically that, for 3-sat, the number of clauses at the crossover point is a linear function of the number of variables. This result is of theoretical interest since it is not clear why such a linear relationship should exist, but it is also of practical interest since recent experiments [ Mitchell et al. 92; Cheeseman et al. 91 ] indicate that the most comput...
Symmetry-Breaking Predicates for Search Problems
, 1996
"... Many reasoning and optimization problems exhibit symmetries. Previous work has shown how special purpose algorithms can make use of these symmetries to simplify reasoning. We present a general scheme whereby symmetries are exploited by adding "symmetry-breaking" predicates to the the ..."
Abstract
-
Cited by 198 (1 self)
- Add to MetaCart
Many reasoning and optimization problems exhibit symmetries. Previous work has shown how special purpose algorithms can make use of these symmetries to simplify reasoning. We present a general scheme whereby symmetries are exploited by adding "symmetry-breaking" predicates to the theory. Our approach
Evidence for Invariants in Local Search
- IN PROCEEDINGS OF AAAI-97
, 1997
"... It is well known that the performance of a stochastic local search procedure depends upon the setting of its noise parameter, and that the optimal setting varies with the problem distribution. It is therefore desirable to develop general priniciples for tuning the procedures. We present two statisti ..."
Abstract
-
Cited by 198 (10 self)
- Add to MetaCart
(Show Context)
It is well known that the performance of a stochastic local search procedure depends upon the setting of its noise parameter, and that the optimal setting varies with the problem distribution. It is therefore desirable to develop general priniciples for tuning the procedures. We present two statistical measures of the local search process that allow one to quickly find the optimal noise settings. These properties are independent of the fine details of the local search strategies, and appear to be relatively independent of the structure of the problem domains. We applied these principles to the problem of evaluating new search heuristics, and discovered two promising new strategies.
The Complexity of Logic-Based Abduction
, 1993
"... Abduction is an important form of nonmonotonic reasoning allowing one to find explanations for certain symptoms or manifestations. When the application domain is described by a logical theory, we speak about logic-based abduction. Candidates for abductive explanations are usually subjected to minima ..."
Abstract
-
Cited by 195 (28 self)
- Add to MetaCart
Abduction is an important form of nonmonotonic reasoning allowing one to find explanations for certain symptoms or manifestations. When the application domain is described by a logical theory, we speak about logic-based abduction. Candidates for abductive explanations are usually subjected to minimality criteria such as subsetminimality, minimal cardinality, minimal weight, or minimality under prioritization of individual hypotheses. This paper presents a comprehensive complexity analysis of relevant decision and search problems related to abduction on propositional theories. Our results indicate that abduction is harder than deduction. In particular, we show that with the most basic forms of abduction the relevant decision problems are complete for complexity classes at the second level of the polynomial hierarchy, while the use of prioritization raises the complexity to the third level in certain cases.