Results 1  10
of
207
Fast approximate energy minimization via graph cuts
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2001
"... In this paper we address the problem of minimizing a large class of energy functions that occur in early vision. The major restriction is that the energy function’s smoothness term must only involve pairs of pixels. We propose two algorithms that use graph cuts to compute a local minimum even when v ..."
Abstract

Cited by 2120 (61 self)
 Add to MetaCart
(Show Context)
In this paper we address the problem of minimizing a large class of energy functions that occur in early vision. The major restriction is that the energy function’s smoothness term must only involve pairs of pixels. We propose two algorithms that use graph cuts to compute a local minimum even when very large moves are allowed. The first move we consider is an αβswap: for a pair of labels α, β, this move exchanges the labels between an arbitrary set of pixels labeled α and another arbitrary set labeled β. Our first algorithm generates a labeling such that there is no swap move that decreases the energy. The second move we consider is an αexpansion: for a label α, this move assigns an arbitrary set of pixels the label α. Our second
A taxonomy and evaluation of dense twoframe stereo correspondence algorithms.
 In IEEE Workshop on Stereo and MultiBaseline Vision,
, 2001
"... Abstract Stereo matching is one of the most active research areas in computer vision. While a large number of algorithms for stereo correspondence have been developed, relatively little work has been done on characterizing their performance. In this paper, we present a taxonomy of dense, twoframe ..."
Abstract

Cited by 1546 (22 self)
 Add to MetaCart
(Show Context)
Abstract Stereo matching is one of the most active research areas in computer vision. While a large number of algorithms for stereo correspondence have been developed, relatively little work has been done on characterizing their performance. In this paper, we present a taxonomy of dense, twoframe stereo methods. Our taxonomy is designed to assess the different components and design decisions made in individual stereo algorithms. Using this taxonomy, we compare existing stereo methods and present experiments evaluating the performance of many different variants. In order to establish a common software platform and a collection of data sets for easy evaluation, we have designed a standalone, flexible C++ implementation that enables the evaluation of individual components and that can easily be extended to include new algorithms. We have also produced several new multiframe stereo data sets with ground truth and are making both the code and data sets available on the Web. Finally, we include a comparative evaluation of a large set of today's bestperforming stereo algorithms.
A comparative study of energy minimization methods for Markov random fields
 IN ECCV
, 2006
"... One of the most exciting advances in early vision has been the development of efficient energy minimization algorithms. Many early vision tasks require labeling each pixel with some quantity such as depth or texture. While many such problems can be elegantly expressed in the language of Markov Ran ..."
Abstract

Cited by 415 (36 self)
 Add to MetaCart
One of the most exciting advances in early vision has been the development of efficient energy minimization algorithms. Many early vision tasks require labeling each pixel with some quantity such as depth or texture. While many such problems can be elegantly expressed in the language of Markov Random Fields (MRF’s), the resulting energy minimization problems were widely viewed as intractable. Recently, algorithms such as graph cuts and loopy belief propagation (LBP) have proven to be very powerful: for example, such methods form the basis for almost all the topperforming stereo methods. Unfortunately, most papers define their own energy function, which is minimized with a specific algorithm of their choice. As a result, the tradeoffs among different energy minimization algorithms are not well understood. In this paper we describe a set of energy minimization benchmarks, which we use to compare the solution quality and running time of several common energy minimization algorithms. We investigate three promising recent methods—graph cuts, LBP, and treereweighted message passing—as well as the wellknown older iterated conditional modes (ICM) algorithm. Our benchmark problems are drawn from published energy functions used for stereo, image stitching and interactive segmentation. We also provide a generalpurpose software interface that allows vision researchers to easily switch between optimization methods with minimal overhead. We expect that the availability of our benchmarks and interface will make it significantly easier for vision researchers to adopt the best method for their specific problems. Benchmarks, code, results and images are available at
Computing Visual Correspondence with Occlusions using Graph Cuts
"... Several new algorithms for visual correspondence based on graph cuts [7, 14, 17] have recently been developed. While these methods give very strong results in practice, they do not handle occlusions properly. Specifically, they treat the two input images asymmetrically, and they do not ensure that a ..."
Abstract

Cited by 365 (11 self)
 Add to MetaCart
(Show Context)
Several new algorithms for visual correspondence based on graph cuts [7, 14, 17] have recently been developed. While these methods give very strong results in practice, they do not handle occlusions properly. Specifically, they treat the two input images asymmetrically, and they do not ensure that a pixel corresponds to at most one pixel in the other image. In this paper, we present a new method which properly addresses occlusions, while preserving the advantages of graph cut algorithms. We give experimental results for stereo as well as motion, which demonstrate that our method performs well both at detecting occlusions and computing disparities.
Stereo matching using belief propagation
, 2003
"... In this paper, we formulate the stereo matching problem as a Markov network and solve it using Bayesian belief propagation. The stereo Markov network consists of three coupled Markov random fields that model the following: a smooth field for depth/disparity, a line process for depth discontinuity, ..."
Abstract

Cited by 350 (4 self)
 Add to MetaCart
(Show Context)
In this paper, we formulate the stereo matching problem as a Markov network and solve it using Bayesian belief propagation. The stereo Markov network consists of three coupled Markov random fields that model the following: a smooth field for depth/disparity, a line process for depth discontinuity, and a binary process for occlusion. After eliminating the line process and the binary process by introducing two robust functions, we apply the belief propagation algorithm to obtain the maximum a posteriori (MAP) estimation in the Markov network. Other lowlevel visual cues (e.g., image segmentation) can also be easily incorporated in our stereo model to obtain better stereo results. Experiments demonstrate that our methods are comparable to the stateoftheart stereo algorithms for many test cases.
Multicamera Scene Reconstruction via Graph Cuts
 in European Conference on Computer Vision
, 2002
"... We address the problem of computing the 3dimensional shape of an arbitrary scene from a set of images taken at known viewpoints. ..."
Abstract

Cited by 317 (9 self)
 Add to MetaCart
(Show Context)
We address the problem of computing the 3dimensional shape of an arbitrary scene from a set of images taken at known viewpoints.
Comparison of Graph Cuts with Belief Propagation for Stereo, Using Identical MRF Parameters
 In ICCV
, 2003
"... Recent stereo algorithms have achieved impressive results by modelling the disparity image as a Markov Random Field (MRF). An important component of an MRFbased approach is the inference algorithm used to find the most likely setting of each node in the MRF. Algorithms have been proposed which use ..."
Abstract

Cited by 172 (0 self)
 Add to MetaCart
(Show Context)
Recent stereo algorithms have achieved impressive results by modelling the disparity image as a Markov Random Field (MRF). An important component of an MRFbased approach is the inference algorithm used to find the most likely setting of each node in the MRF. Algorithms have been proposed which use Graph Cuts or Belief Propagation for inference. These stereo algorithms differ in both the inference algorithm used and the formulation of the MRF. It is unknown whether to attribute the responsibility for differences in performance to the MRF or the inference algorithm. We address this through controlled experiments by comparing the Belief Propagation algorithm and the Graph Cuts algorithm on the same MRF's, which have been created for calculating stereo disparities. We find that the labellings produced by the two algorithms are comparable. The solutions produced by Graph Cuts have a lower energy than those produced with Belief Propagation, but this does not necessarily lead to increased performance relative to the groundtruth.
Handling Occlusions in Dense Multiview Stereo
, 2001
"... While stereo matching was originally formulated as the recovery of 3D shape from a pair of images, it is now generally recognized that using more than two images can dramatically improve the quality of the reconstruction. Unfortunately, as more images are added, the prevalence of semioccluded region ..."
Abstract

Cited by 140 (9 self)
 Add to MetaCart
(Show Context)
While stereo matching was originally formulated as the recovery of 3D shape from a pair of images, it is now generally recognized that using more than two images can dramatically improve the quality of the reconstruction. Unfortunately, as more images are added, the prevalence of semioccluded regions (pixels visible in some but not all images) also increases. In this paper, we propose some novel techniques to deal with this problem. Our first idea is to use a combination of shiftable windows and a dynamically selected subset of the neighboring images to do the matches. Our second idea is to explicitly label occluded pixels within a global energy minimization framework, and to reason about visibility within this framework so that only truly visible pixels are matched. Experimental results show a dramatic improvement using the first idea over conventional multibaseline stereo, especially when used in conjunction with a global energy minimization technique. These results also show that explicit occlusion labeling and visibility reasoning do help, but not significantly, if the spatial and temporal selection is applied first.
Global Stereo Reconstruction under Second Order Smoothness Priors
"... Secondorder priors on the smoothness of 3D surfaces are a better model of typical scenes than firstorder priors. However, stereo reconstruction using global inference algorithms, such as graphcuts, has not been able to incorporate secondorder priors because the triple cliques needed to express t ..."
Abstract

Cited by 127 (8 self)
 Add to MetaCart
Secondorder priors on the smoothness of 3D surfaces are a better model of typical scenes than firstorder priors. However, stereo reconstruction using global inference algorithms, such as graphcuts, has not been able to incorporate secondorder priors because the triple cliques needed to express them yield intractable (nonsubmodular) optimization problems. This paper shows that inference with triple cliques can be effectively optimized. Our optimization strategy is a development of recent extensions to αexpansion, based on the “QPBO ” algorithm [5, 14, 26]. The strategy is to repeatedly merge proposal depth maps using a novel extension of QPBO. Proposal depth maps can come from any source, for example frontoparallel planes as in αexpansion, or indeed any existing stereo algorithm, with arbitrary parameter settings. Experimental results demonstrate the usefulness of the secondorder prior and the efficacy of our optimization framework. An implementation of our stereo framework is available online [34].