Results 1  10
of
163
SNOPT: An SQP Algorithm For LargeScale Constrained Optimization
, 2002
"... Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first deriv ..."
Abstract

Cited by 582 (23 self)
 Add to MetaCart
(Show Context)
Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first derivatives are available, and that the constraint gradients are sparse. We discuss
Bundle Adjustment  A Modern Synthesis
 VISION ALGORITHMS: THEORY AND PRACTICE, LNCS
, 2000
"... This paper is a survey of the theory and methods of photogrammetric bundle adjustment, aimed at potential implementors in the computer vision community. Bundle adjustment is the problem of refining a visual reconstruction to produce jointly optimal structure and viewing parameter estimates. Topics c ..."
Abstract

Cited by 555 (12 self)
 Add to MetaCart
(Show Context)
This paper is a survey of the theory and methods of photogrammetric bundle adjustment, aimed at potential implementors in the computer vision community. Bundle adjustment is the problem of refining a visual reconstruction to produce jointly optimal structure and viewing parameter estimates. Topics covered include: the choice of cost function and robustness; numerical optimization including sparse Newton methods, linearly convergent approximations, updating and recursive methods; gauge (datum) invariance; and quality control. The theory is developed for general robust cost functions rather than restricting attention to traditional nonlinear least squares.
A NUMERICALLY STABLE DUAL METHOD FOR SOLVING STRICTLY CONVEX QUADRATIC PROGRAMS
, 1983
"... An efficient and numerically stable dual algorithm for positive definite quadratic programming is described which takes advantage of the fact lhat the unconstrained minimum of the objective function can be used as a starling point. Its implementation utilizes the Cholesky and QR factorizations and p ..."
Abstract

Cited by 156 (0 self)
 Add to MetaCart
An efficient and numerically stable dual algorithm for positive definite quadratic programming is described which takes advantage of the fact lhat the unconstrained minimum of the objective function can be used as a starling point. Its implementation utilizes the Cholesky and QR factorizations and procedures for updating them. The performance of the dual algorithm is compared against that of primal algorithms when nsed to solve randomly generated test problems and quadratic programs generated in the course of solving nonlinear programming problems by a successive quadratic programming code (the principal motivation for the development of the algorithm). These computational results indicate that the dual algorithm is superior to primal algorithms when a primal feasible point is not readily available. The algorithm is also compared theoretically to the modifiedsimplex type dual methods of Lemke and Van de Panne and Whinston and it is ilh,strated by a numerical example.
iSAM: Incremental Smoothing and Mapping
, 2008
"... We present incremental smoothing and mapping (iSAM), a novel approach to the simultaneous localization and mapping problem that is based on fast incremental matrix factorization. iSAM provides an efficient and exact solution by updating a QR factorization of the naturally sparse smoothing informatio ..."
Abstract

Cited by 153 (35 self)
 Add to MetaCart
We present incremental smoothing and mapping (iSAM), a novel approach to the simultaneous localization and mapping problem that is based on fast incremental matrix factorization. iSAM provides an efficient and exact solution by updating a QR factorization of the naturally sparse smoothing information matrix, therefore recalculating only the matrix entries that actually change. iSAM is efficient even for robot trajectories with many loops as it avoids unnecessary fillin in the factor matrix by periodic variable reordering. Also, to enable data association in realtime, we provide efficient algorithms to access the estimation uncertainties of interest based on the factored information matrix. We systematically evaluate the different components of iSAM as well as the overall algorithm using various simulated and realworld datasets for both landmark and poseonly settings.
An Eigenspace Update Algorithm for Image Analysis
, 1997
"... this paper However, the vision research community has largely overlooked makes the following contributions: parallel developments in signal processing and numerical linear algebra concerning efficient eigenspace updating algorithms. . We provide a comparison of some of the popular tech These new ..."
Abstract

Cited by 133 (3 self)
 Add to MetaCart
this paper However, the vision research community has largely overlooked makes the following contributions: parallel developments in signal processing and numerical linear algebra concerning efficient eigenspace updating algorithms. . We provide a comparison of some of the popular tech These new developments are significant for two reasons: Adopt niques existing in the vision literature for SVD/KLT com ing them will make some of the current vision algorithms more putations and point out the problems associated with robust and efficient. More important is the fact that incremental those techniques
Numerical solution of the stable, nonnegative definite Lyapunov equation
 IMA J. Numer. Anal
, 1982
"... We discuss the numerical solution of the Lyapunov equation ..."
Abstract

Cited by 110 (2 self)
 Add to MetaCart
We discuss the numerical solution of the Lyapunov equation
Algorithm 887: Cholmod, supernodal sparse cholesky factorization and update/downdate
 ACM Transactions on Mathematical Software
, 2008
"... CHOLMOD is a set of routines for factorizing sparse symmetric positive definite matrices of the form A or A A T, updating/downdating a sparse Cholesky factorization, solving linear systems, updating/downdating the solution to the triangular system Lx = b, and many other sparse matrix functions for b ..."
Abstract

Cited by 109 (8 self)
 Add to MetaCart
CHOLMOD is a set of routines for factorizing sparse symmetric positive definite matrices of the form A or A A T, updating/downdating a sparse Cholesky factorization, solving linear systems, updating/downdating the solution to the triangular system Lx = b, and many other sparse matrix functions for both symmetric and unsymmetric matrices. Its supernodal Cholesky factorization relies on LAPACK and the Level3 BLAS, and obtains a substantial fraction of the peak performance of the BLAS. Both real and complex matrices are supported. CHOLMOD is written in ANSI/ISO C, with both C and MATLAB TM interfaces. It appears in MATLAB 7.2 as x=A\b when A is sparse symmetric positive definite, as well as in several other sparse matrix functions.
iSAM2: Incremental Smoothing and Mapping Using the Bayes Tree
"... We present a novel data structure, the Bayes tree, that provides an algorithmic foundation enabling a better understanding of existing graphical model inference algorithms and their connection to sparse matrix factorization methods. Similar to a clique tree, a Bayes tree encodes a factored probabili ..."
Abstract

Cited by 69 (26 self)
 Add to MetaCart
(Show Context)
We present a novel data structure, the Bayes tree, that provides an algorithmic foundation enabling a better understanding of existing graphical model inference algorithms and their connection to sparse matrix factorization methods. Similar to a clique tree, a Bayes tree encodes a factored probability density, but unlike the clique tree it is directed and maps more naturally to the square root information matrix of the simultaneous localization and mapping (SLAM) problem. In this paper, we highlight three insights provided by our new data structure. First, the Bayes tree provides a better understanding of the matrix factorization in terms of probability densities. Second, we show how the fairly abstract updates to a matrix factorization translate to a simple editing of the Bayes tree and its conditional densities. Third, we apply the Bayes tree to obtain a completely novel algorithm for sparse nonlinear incremental optimization, named iSAM2, which achieves improvements in efficiency through incremental variable reordering and fluid relinearization, eliminating the need for periodic batch steps. We analyze various properties of iSAM2 in detail, and show on a range of real and simulated datasets that our algorithm compares favorably with other recent mapping algorithms in both quality and efficiency.