Results 1 - 10
of
260
Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images.
- IEEE Trans. Pattern Anal. Mach. Intell.
, 1984
"... Abstract-We make an analogy between images and statistical mechanics systems. Pixel gray levels and the presence and orientation of edges are viewed as states of atoms or molecules in a lattice-like physical system. The assignment of an energy function in the physical system determines its Gibbs di ..."
Abstract
-
Cited by 5126 (1 self)
- Add to MetaCart
Abstract-We make an analogy between images and statistical mechanics systems. Pixel gray levels and the presence and orientation of edges are viewed as states of atoms or molecules in a lattice-like physical system. The assignment of an energy function in the physical system determines its Gibbs distribution. Because of the Gibbs distribution, Markov random field (MRF) equivalence, this assignment also determines an MRF image model. The energy function is a more convenient and natural mechanism for embodying picture attributes than are the local characteristics of the MRF. For a range of degradation mechanisms, including blurring, nonlinear deformations, and multiplicative or additive noise, the posterior distribution is an MRF with a structure akin to the image model. By the analogy, the posterior distribution defines another (imaginary) physical system. Gradual temperature reduction in the physical system isolates low energy states ("annealing"), or what is the same thing, the most probable states under the Gibbs distribution. The analogous operation under the posterior distribution yields the maximum a posteriori (MAP) estimate of the image given the degraded observations. The result is a highly parallel "relaxation" algorithm for MAP estimation. We establish convergence properties of the algorithm and we experiment with some simple pictures, for which good restorations are obtained at low signal-to-noise ratios.
A maximum entropy model of phonotactics and phonotactic learning
, 2006
"... The study of phonotactics (e.g., the ability of English speakers to distinguish possible words like blick from impossible words like *bnick) is a central topic in phonology. We propose a theory of phonotactic grammars and a learning algorithm that constructs such grammars from positive evidence. Our ..."
Abstract
-
Cited by 136 (15 self)
- Add to MetaCart
(Show Context)
The study of phonotactics (e.g., the ability of English speakers to distinguish possible words like blick from impossible words like *bnick) is a central topic in phonology. We propose a theory of phonotactic grammars and a learning algorithm that constructs such grammars from positive evidence. Our grammars consist of constraints that are assigned numerical weights according to the principle of maximum entropy. Possible words are assessed by these grammars based on the weighted sum of their constraint violations. The learning algorithm yields grammars that can capture both categorical and gradient phonotactic patterns. The algorithm is not provided with any constraints in advance, but uses its own resources to form constraints and weight them. A baseline model, in which Universal Grammar is reduced to a feature set and an SPE-style constraint format, suffices to learn many phonotactic phenomena. In order to learn nonlocal phenomena such as stress and vowel harmony, it is necessary to augment the model with autosegmental tiers and metrical grids. Our results thus offer novel, learning-theoretic support for such representations. We apply the model to English syllable onsets, Shona vowel harmony, quantity-insensitive stress typology, and the full phonotactics of Wargamay, showing that the learned grammars capture the distributional generalizations of these languages and accurately predict the findings of a phonotactic experiment.
From Laplace To Supernova Sn 1987a: Bayesian Inference In Astrophysics
, 1990
"... . The Bayesian approach to probability theory is presented as an alternative to the currently used long-run relative frequency approach, which does not offer clear, compelling criteria for the design of statistical methods. Bayesian probability theory offers unique and demonstrably optimal solutions ..."
Abstract
-
Cited by 67 (2 self)
- Add to MetaCart
. The Bayesian approach to probability theory is presented as an alternative to the currently used long-run relative frequency approach, which does not offer clear, compelling criteria for the design of statistical methods. Bayesian probability theory offers unique and demonstrably optimal solutions to well-posed statistical problems, and is historically the original approach to statistics. The reasons for earlier rejection of Bayesian methods are discussed, and it is noted that the work of Cox, Jaynes, and others answers earlier objections, giving Bayesian inference a firm logical and mathematical foundation as the correct mathematical language for quantifying uncertainty. The Bayesian approaches to parameter estimation and model comparison are outlined and illustrated by application to a simple problem based on the gaussian distribution. As further illustrations of the Bayesian paradigm, Bayesian solutions to two interesting astrophysical problems are outlined: the measurement of wea...
Bayesian Fundamentalism or Enlightenment? On the explanatory status and theoretical contributions of Bayesian models of cognition
- Behavioral and Brain Sciences
, 2011
"... To be published in Behavioral and Brain Sciences (in press) ..."
Abstract
-
Cited by 43 (1 self)
- Add to MetaCart
(Show Context)
To be published in Behavioral and Brain Sciences (in press)
The Well-Posed Problem
- Foundations of Physics
, 1973
"... distributions obtained from transformation groups, using as our main example the famous paradox of Bertrand. Bertrand's problem (Bertrand, 1889) was stated originally in terms of drawing a straight line "at random" intersecting a circle. It will be helpful to think of this in a more ..."
Abstract
-
Cited by 39 (0 self)
- Add to MetaCart
(Show Context)
distributions obtained from transformation groups, using as our main example the famous paradox of Bertrand. Bertrand's problem (Bertrand, 1889) was stated originally in terms of drawing a straight line "at random" intersecting a circle. It will be helpful to think of this in a more concrete way; presumably, we do no violence to the problem (i.e., it is still just as "random") if we suppose that we are tossing straws onto the circle, without specifying how they are tossed. We therefore formulate the problem as follows. A long straw is tossed at random onto a circle; given that it falls so that it intersects the circle, what is the probability that the chord thus defined is longer than a side of the inscribed equilateral triangle? Since Bertrand proposed it in 1889 this problem has been cited to generations of students to demonstrate that Laplace's "principle of indifference" contains logical inconsistencies. For, there appear to be many ways of defining "equally possibl
The formal definition of reference priors
- ANN. STATIST
, 2009
"... Reference analysis produces objective Bayesian inference, in the sense that inferential statements depend only on the assumed model and the available data, and the prior distribution used to make an inference is least informative in a certain information-theoretic sense. Reference priors have been r ..."
Abstract
-
Cited by 39 (2 self)
- Add to MetaCart
(Show Context)
Reference analysis produces objective Bayesian inference, in the sense that inferential statements depend only on the assumed model and the available data, and the prior distribution used to make an inference is least informative in a certain information-theoretic sense. Reference priors have been rigorously defined in specific contexts and heuristically defined in general, but a rigorous general definition has been lacking. We produce a rigorous general definition here and then show how an explicit expression for the reference prior can be obtained under very weak regularity conditions. The explicit expression can be used to derive new reference priors both analytically and numerically.
A Natural Law of Succession
, 1995
"... Consider the following problem. You are given an alphabet of k distinct symbols and are told that the i th symbol occurred exactly ni times in the past. On the basis of this information alone, you must now estimate the conditional probability that the next symbol will be i. In this report, we presen ..."
Abstract
-
Cited by 39 (3 self)
- Add to MetaCart
Consider the following problem. You are given an alphabet of k distinct symbols and are told that the i th symbol occurred exactly ni times in the past. On the basis of this information alone, you must now estimate the conditional probability that the next symbol will be i. In this report, we present a new solution to this fundamental problem in statistics and demonstrate that our solution outperforms standard approaches, both in theory and in practice.
An Evolutionary Algorithm for Integer Programming
- Parallel Problem Solving from Nature - PPSN III, Lecture Notes in Computer Science
, 1994
"... . The mutation distribution of evolutionary algorithms usually is oriented at the type of the search space. Typical examples are binomial distributions for binary strings in genetic algorithms or normal distributions for real valued vectors in evolution strategies and evolutionary programming. This ..."
Abstract
-
Cited by 34 (4 self)
- Add to MetaCart
(Show Context)
. The mutation distribution of evolutionary algorithms usually is oriented at the type of the search space. Typical examples are binomial distributions for binary strings in genetic algorithms or normal distributions for real valued vectors in evolution strategies and evolutionary programming. This paper is devoted to the construction of a mutation distribution for unbounded integer search spaces. The principle of maximum entropy is used to select a specific distribution from numerous potential candidates. The resulting evolutionary algorithm is tested for five nonlinear integer problems. 1 Introduction Evolutionary algorithms (EAs) represent a class of stochastic optimization algorithms in which principles of organic evolution are regarded as rules in optimization. They are often applied to real parameter optimization problems [2] when specialized techniques are not available or standard methods fail to give satisfactory answers due to multimodality, nondifferentiability or discontin...
Can the Maximum Entropy Principle Be Explained as a Consistency Requirement?
, 1997
"... The principle of maximumentropy is a general method to assign values to probability distributions on the basis of partial information. This principle, introduced by Jaynes in 1957, forms an extension of the classical principle of insufficient reason. It has been further generalized, both in mathe ..."
Abstract
-
Cited by 33 (1 self)
- Add to MetaCart
The principle of maximumentropy is a general method to assign values to probability distributions on the basis of partial information. This principle, introduced by Jaynes in 1957, forms an extension of the classical principle of insufficient reason. It has been further generalized, both in mathematical formulation and in intended scope, into the principle of maximum relative entropy or of minimum information. It has been claimed that these principles are singled out as unique methods of statistical inference that agree with certain compelling consistency requirements. This paper reviews these consistency arguments and the surrounding controversy. It is shown that the uniqueness proofs are flawed, or rest on unreasonably strong assumptions. A more general class of 1 inference rules, maximizing the so-called R'enyi entropies, is exhibited which also fulfill the reasonable part of the consistency assumptions. 1 Introduction In any application of probability theory to the pro...
Lattice duality: The origin of probability and entropy
- In press: Neurocomputing
, 2005
"... Bayesian probability theory is an inference calculus, which originates from a generalization of inclusion on the Boolean lattice of logical assertions to a degree of inclusion represented by a real number. Dual to this lattice is the distributive lattice of questions constructed from the ordered set ..."
Abstract
-
Cited by 31 (10 self)
- Add to MetaCart
(Show Context)
Bayesian probability theory is an inference calculus, which originates from a generalization of inclusion on the Boolean lattice of logical assertions to a degree of inclusion represented by a real number. Dual to this lattice is the distributive lattice of questions constructed from the ordered set of down-sets of assertions, which forms the foundation of the calculus of inquiry—a generalization of information theory. In this paper we introduce this novel perspective on these spaces in which machine learning is performed and discuss the relationship between these results and several proposed generalizations of information theory in the literature.