Results 1  10
of
141
The DLV System for Knowledge Representation and Reasoning
 ACM Transactions on Computational Logic
, 2002
"... Disjunctive Logic Programming (DLP) is an advanced formalism for knowledge representation and reasoning, which is very expressive in a precise mathematical sense: it allows to express every property of finite structures that is decidable in the complexity class ΣP 2 (NPNP). Thus, under widely believ ..."
Abstract

Cited by 456 (102 self)
 Add to MetaCart
Disjunctive Logic Programming (DLP) is an advanced formalism for knowledge representation and reasoning, which is very expressive in a precise mathematical sense: it allows to express every property of finite structures that is decidable in the complexity class ΣP 2 (NPNP). Thus, under widely believed assumptions, DLP is strictly more expressive than normal (disjunctionfree) logic programming, whose expressiveness is limited to properties decidable in NP. Importantly, apart from enlarging the class of applications which can be encoded in the language, disjunction often allows for representing problems of lower complexity in a simpler and more natural fashion. This paper presents the DLV system, which is widely considered the stateoftheart implementation of disjunctive logic programming, and addresses several aspects. As for problem solving, we provide a formal definition of its kernel language, functionfree disjunctive logic programs (also known as disjunctive datalog), extended by weak constraints, which are a powerful tool to express optimization problems. We then illustrate the usage of DLV as a tool for knowledge representation and reasoning, describing a new declarative programming methodology which allows one to encode complex problems (up to ∆P 3complete problems) in a declarative fashion. On the foundational side, we provide a detailed analysis of the computational complexity of the language of
Extending and Implementing the Stable Model Semantics
, 2002
"... A novel logic program like language, weight constraint rules, is developed for answer set programming purposes. It generalizes normal logic programs by allowing weight constraints in place of literals to represent, e.g., cardinality and resource constraints and by providing optimization capabilities ..."
Abstract

Cited by 396 (9 self)
 Add to MetaCart
A novel logic program like language, weight constraint rules, is developed for answer set programming purposes. It generalizes normal logic programs by allowing weight constraints in place of literals to represent, e.g., cardinality and resource constraints and by providing optimization capabilities. A declarative semantics is developed which extends the stable model semantics of normal programs. The computational complexity of the language is shown to be similar to that of normal programs under the stable model semantics. A simple embedding of general weight constraint rules to a small subclass of the language called basic constraint rules is devised. An implementation of the language, the smodels system, is developed based on this embedding. It uses a two level architecture consisting of a frontend and a kernel language implementation. The frontend allows restricted use of variables and functions and compiles general weight constraint rules to basic constraint rules. A major part of the work is the development of an ecient search procedure for computing stable models for this kernel language. The procedure is compared with and empirically tested against satis ability checkers and an implementation of the stable model semantics. It offers a competitive implementation of the stable model semantics for normal programs and attractive performance for problems where the new types of rules provide a compact representation.
Complexity and Expressive Power of Logic Programming
, 1997
"... This paper surveys various complexity results on different forms of logic programming. The main focus is on decidable forms of logic programming, in particular, propositional logic programming and datalog, but we also mention general logic programming with function symbols. Next to classical results ..."
Abstract

Cited by 366 (57 self)
 Add to MetaCart
(Show Context)
This paper surveys various complexity results on different forms of logic programming. The main focus is on decidable forms of logic programming, in particular, propositional logic programming and datalog, but we also mention general logic programming with function symbols. Next to classical results on plain logic programming (pure Horn clause programs), more recent results on various important extensions of logic programming are surveyed. These include logic programming with different forms of negation, disjunctive logic programming, logic programming with equality, and constraint logic programming. The complexity of the unification problem is also addressed.
Preferred Answer Sets for Extended Logic Programs
 ARTIFICIAL INTELLIGENCE
, 1998
"... In this paper, we address the issue of how Gelfond and Lifschitz's answer set semantics for extended logic programs can be suitably modified to handle prioritized programs. In such programs an ordering on the program rules is used to express preferences. We show how this ordering can be used ..."
Abstract

Cited by 158 (20 self)
 Add to MetaCart
In this paper, we address the issue of how Gelfond and Lifschitz's answer set semantics for extended logic programs can be suitably modified to handle prioritized programs. In such programs an ordering on the program rules is used to express preferences. We show how this ordering can be used to define preferred answer sets and thus to increase the set of consequences of a program. We define a strong and a weak notion of preferred answer sets. The first takes preferences more seriously, while the second guarantees the existence of a preferred answer set for programs possessing at least one answer set. Adding priorities
Logic Programming and Knowledge Representation  the AProlog perspective
 Artificial Intelligence
, 2002
"... In this paper we give a short introduction to logic programming approach to knowledge representation and reasoning. The intention is to help the reader to develop a 'feel' for the field's history and some of its recent developments. The discussion is mainly limited to logic programs u ..."
Abstract

Cited by 98 (2 self)
 Add to MetaCart
(Show Context)
In this paper we give a short introduction to logic programming approach to knowledge representation and reasoning. The intention is to help the reader to develop a 'feel' for the field's history and some of its recent developments. The discussion is mainly limited to logic programs under the answer set semantics. For understanding of approaches to logic programming build on wellfounded semantics, general theories of argumentation, abductive reasoning, etc., the reader is referred to other publications.
Unfolding Partiality and Disjunctions in Stable Model Semantics
 Proceedings of the Seventh International Conference on Principles of Knowledge Representation and Reasoning (KR 2000), April 1215
, 2000
"... The paper studies an implementation methodology for partial and disjunctive stable models where partiality and disjunctions are unfolded from a logic program so that an implementation of stable models for normal (disjunctionfree) programs can be used as the core inference engine. The unfolding is d ..."
Abstract

Cited by 98 (17 self)
 Add to MetaCart
The paper studies an implementation methodology for partial and disjunctive stable models where partiality and disjunctions are unfolded from a logic program so that an implementation of stable models for normal (disjunctionfree) programs can be used as the core inference engine. The unfolding is done in two separate steps. Firstly, it is shown that partial stable models can be captured by total stable models using a simple linear and modular program transformation. Hence, reasoning tasks concerning partial models can be solved using an implementation of total models. Disjunctive partial stable models have been lacking implementations which now become available as the translation handles also the disjunctive case. Secondly, it is shown how total stable models of disjunctive programs can be determined by computing stable models for normal programs. Hence, an implementation of stable models of normal programs can be used as a core engine for implementing disjunctiv...
Disjunctive Stable Models: Unfounded Sets, Fixpoint Semantics, and Computation
 Information and Computation
, 1997
"... Disjunctive logic programs have become a powerful tool in knowledge representation and commonsense reasoning. This paper focuses on stable model semantics, currently the most widely acknowledged semantics for disjunctive logic programs. After presenting a new notion of unfounded sets for disjunct ..."
Abstract

Cited by 89 (20 self)
 Add to MetaCart
(Show Context)
Disjunctive logic programs have become a powerful tool in knowledge representation and commonsense reasoning. This paper focuses on stable model semantics, currently the most widely acknowledged semantics for disjunctive logic programs. After presenting a new notion of unfounded sets for disjunctive logic programs, we provide two declarative characterizations of stable models in terms of unfounded sets. One shows that the set of stable models coincides with the family of unfoundedfree models (i.e., a model is stable iff it contains no unfounded atoms). The other proves that stable models can be defined equivalently by a property of their false literals, as a model is stable iff the set of its false literals coincides with its greatest unfounded set. We then generalize the wellfounded WP operator to disjunctive logic programs, give a fixpoint semantics for disjunctive stable models and present an algorithm for computing the stable models of functionfree programs. The algor...
Extending the Smodels System with Cardinality and Weight Constraints
 LogicBased Artificial Intelligence
, 2000
"... The Smodels system is one of the stateoftheart implementations of stable model computation for normal logic programs. In order to enable more realistic applications, the basic modeling language of normal programs has been extended with new constructs including cardinality and weight constraints a ..."
Abstract

Cited by 81 (8 self)
 Add to MetaCart
The Smodels system is one of the stateoftheart implementations of stable model computation for normal logic programs. In order to enable more realistic applications, the basic modeling language of normal programs has been extended with new constructs including cardinality and weight constraints and corresponding implementation techniques have been developed. This paper summarizes the extensions that have been included in the system, demonstrates their use, provides basic application methodology, illustrates the current level of performance of the system, and compares it to stateoftheart satis ability checkers.