Results 11  20
of
195
The design and experimental analysis of algorithms for temporal reasoning
 Journal of Artificial Intelligence Research
, 1996
"... Many applicationsfrom planning and scheduling to problems in molecular biology rely heavily on a temporal reasoning component. In this paper, we discuss the design and empirical analysis of algorithms for a temporal reasoning system based on Allen's in uential intervalbased framework for rep ..."
Abstract

Cited by 57 (0 self)
 Add to MetaCart
Many applicationsfrom planning and scheduling to problems in molecular biology rely heavily on a temporal reasoning component. In this paper, we discuss the design and empirical analysis of algorithms for a temporal reasoning system based on Allen's in uential intervalbased framework for representing temporal information. At the core of the system are algorithms for determining whether the temporal information is consistent, and, if so, nding one or more scenarios that are consistent with the temporal information. Two important algorithms for these tasks are a path consistency algorithm and a backtracking algorithm. For the path consistency algorithm, we develop techniques that can result in up to a tenfold speedup over an already highly optimized implementation. For the backtracking algorithm, we develop variable and value ordering heuristics that are shown empirically to dramatically improve the performance of the algorithm. As well, we show that a previously suggested reformulation of the backtracking search problem can reduce the time and space requirements of the backtracking search. Taken together, the techniques we develop allow a temporal reasoning component tosolve problems that are of practical size. 1.
Tractable Disjunctions of Linear Constraints: Basic Results and Applications to Temporal Reasoning
 Theoretical Computer Science
, 1996
"... We study the problems of deciding consistency and performing variable elimination for disjunctions of linear inequalities and disequations with at most one inequality per disjunction. This new class of constraints extends the class of generalized linear constraints originally studied by Lassez an ..."
Abstract

Cited by 52 (3 self)
 Add to MetaCart
We study the problems of deciding consistency and performing variable elimination for disjunctions of linear inequalities and disequations with at most one inequality per disjunction. This new class of constraints extends the class of generalized linear constraints originally studied by Lassez and McAloon. We show that deciding consistency of a set of constraints in this class can be done in polynomial time. We also present a variable elimination algorithm which is similar to Fourier's algorithm for linear inequalities. Finally, we use these results to provide new temporal reasoning algorithms for the OrdHorn subclass of Allen's interval formalism. We also show that there is no low level of local consistency that can guarantee global consistency for the OrdHorn subclass. This property distinguishes the OrdHorn subclass from the pointizable subclass (for which strong 5consistency is sufficient to guarantee global consistency), and the continuous endpoint subclass (for whi...
Automated Complexity Analysis Based on Ordered Resolution
 11TH IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (NEW BRUNSWICK, NEW JERSEY, U.S.
, 1996
"... ..."
Maximal Tractable Fragments of the Region Connection Calculus: A Complete Analysis
 In Proceedings of the 16th International Joint Conference on Artificial Intelligence (IJCAI99
, 1999
"... We present a general method for proving tractability of reasoning over disjunctions of jointly exhaustive and pairwise disjoint relations. Examples of these kinds of relations are Allen's temporal interval relations and their spatial counterpart, the RCC8 relations by Randell, Cui, and Cohn. Ap ..."
Abstract

Cited by 47 (15 self)
 Add to MetaCart
We present a general method for proving tractability of reasoning over disjunctions of jointly exhaustive and pairwise disjoint relations. Examples of these kinds of relations are Allen's temporal interval relations and their spatial counterpart, the RCC8 relations by Randell, Cui, and Cohn. Applying this method does not require detailed knowledge about the considered relations; instead, it is rather sufficient to have a subset of the considered set of relations for which pathconsistency is known to decide consistency. Using this method, we give a complete classification of tractability of reasoning over RCC8 by identifying two large new maximal tractable subsets and show that these two subsets together with b H 8 , the already known maximal tractable subset, are the only such sets for RCC8 that contain all base relations. We also apply our method to Allen's interval algebra and derive the known maximal tractable subset. 1 Introduction In qualitative spatial and temporal reasoning,...
Constraint Satisfaction with Countable Homogeneous Templates
 IN PROCEEDINGS OF CSL’03
, 2003
"... For a fixed countable homogeneous structure we study the computational problem whether a given finite structure of the same relational signature homomorphically maps to . This problem is known as the constraint satisfaction problem CSP( ) for and was intensively studied for finite . We show that ..."
Abstract

Cited by 42 (19 self)
 Add to MetaCart
(Show Context)
For a fixed countable homogeneous structure we study the computational problem whether a given finite structure of the same relational signature homomorphically maps to . This problem is known as the constraint satisfaction problem CSP( ) for and was intensively studied for finite . We show that  as in the case of finite  the computational complexity of CSP( ) for countable homogeneous is determinded by the clone of polymorphisms of . To this end we prove the following theorem which is of independent interest: The primitive positive definable relations over an !categorical structure are precisely the relations that are invariant under the polymorphisms of .
Reasoning About Temporal Relations: The Tractable Subalgebras Of Allen's Interval Algebra
 Journal of the ACM
, 2001
"... Allen's interval algebra is one of the best established formalisms for temporal reasoning. This paper is the final step in the classification of complexity in Allen's algebra. We show that the current knowledge about tractability in the interval algebra is complete, that is, this algebra c ..."
Abstract

Cited by 42 (2 self)
 Add to MetaCart
(Show Context)
Allen's interval algebra is one of the best established formalisms for temporal reasoning. This paper is the final step in the classification of complexity in Allen's algebra. We show that the current knowledge about tractability in the interval algebra is complete, that is, this algebra contains exactly eighteen maximal tractable subalgebras, and reasoning in any fragment not entirely contained in one of these subalgebras is NPcomplete. We obtain this result by giving a new uniform description of the known maximal tractable subalgebras and then systematically using an algebraic technique for identifying maximal subalgebras with a given property.
Computational Properties of Qualitative Spatial Reasoning: First Results
 KI95: ADVANCES IN ARTIFICIAL INTELLIGENCE
, 1995
"... While the computational properties of qualitative temporal reasoning have been analyzed quite thoroughly, the computational properties of qualitative spatial reasoning are not very well investigated. In fact, almost no completeness results are known for qualitative spatial calculi and no computati ..."
Abstract

Cited by 41 (5 self)
 Add to MetaCart
While the computational properties of qualitative temporal reasoning have been analyzed quite thoroughly, the computational properties of qualitative spatial reasoning are not very well investigated. In fact, almost no completeness results are known for qualitative spatial calculi and no computational complexity analysis has been carried out yet. In this paper, we will focus on the socalled RCC approach and use Bennett's encoding of spatial reasoning in intuitionistic logic in order to show that consistency checking for the topological base relations can be done efficiently. Further, we show that pathconsistency is sufficient for deciding global consistency. As a sideeffect we prove a particular fragment of propositional intuitionistic logic to be tractable.
Processing Disjunctions in Temporal Constraint Networks
 Artificial Intelligence
, 1997
"... The framework of Temporal constraint Satisfaction Problems (TCSP) has been proposed for representing and processing temporal knowledge. Deciding consistency of TCSPs is known to be intractable. As demonstrates in this paper, even local consistency algorithms like pathconsistency can be exponential ..."
Abstract

Cited by 41 (2 self)
 Add to MetaCart
(Show Context)
The framework of Temporal constraint Satisfaction Problems (TCSP) has been proposed for representing and processing temporal knowledge. Deciding consistency of TCSPs is known to be intractable. As demonstrates in this paper, even local consistency algorithms like pathconsistency can be exponential due to the fragmentation problem. We present two new polynomial approximation algorithms, UpperLowerTightening (ULT) and LoosePathConsistency (LPC), which are e cient yet e ective in detecting inconsistencies and reducing fragmentation. The experiments we performed on hard problems in the transition region show that LPC is the superior algorithm. When incorporated within backtrack search LPC is capable of improving performance by orders of magnitude.
Relation algebras in qualitative spatial reasoning
 Fundamenta Informaticae
, 1999
"... The formalization of the “part – of ” relationship goes back to the mereology of S. Le´sniewski, subsequently taken up by Leonard & Goodman (1940), and Clarke (1981). In this paper we investigate relation algebras obtained from different notions of “part–of”, respectively, “connectedness” in var ..."
Abstract

Cited by 39 (14 self)
 Add to MetaCart
(Show Context)
The formalization of the “part – of ” relationship goes back to the mereology of S. Le´sniewski, subsequently taken up by Leonard & Goodman (1940), and Clarke (1981). In this paper we investigate relation algebras obtained from different notions of “part–of”, respectively, “connectedness” in various domains. We obtain minimal models for the relational part of mereology in a general setting, and when the underlying set is an atomless Boolean algebra. 1
Efficient Algorithms for Qualitative Reasoning about Time
 Artificial Intelligence
, 1995
"... Reasoning about temporal information is an important task in many areas of Artificial Intelligence. In this paper we address the problem of scalability in temporal reasoning by providing a collection of new algorithms for efficiently managing large sets of qualitative temporal relations. We focus on ..."
Abstract

Cited by 38 (6 self)
 Add to MetaCart
(Show Context)
Reasoning about temporal information is an important task in many areas of Artificial Intelligence. In this paper we address the problem of scalability in temporal reasoning by providing a collection of new algorithms for efficiently managing large sets of qualitative temporal relations. We focus on the class of relations forming the Point Algebra (PArelations) and on a major extension to include binary disjunctions of PArelations (PAdisjunctions). Such disjunctions add a great deal of expressive power, including the ability to stipulate disjointness of temporal intervals, which is important in planning applications. Our representation of time is based on timegraphs, graphs partitioned into a set of chains on which the search is supported by a metagraph data structure. The approach is an extension of the time representation proposed by Schubert, Taugher and Miller in the context of story comprehension. The algorithms herein enable construction of a timegraph from a given set of PAr...