Results 1  10
of
499
InductiveDataType Systems
, 2002
"... In a previous work ("Abstract Data Type Systems", TCS 173(2), 1997), the leI two authors presented a combined lmbined made of a (strongl normal3zG9 alrmal rewrite system and a typed #calA#Ik enriched by patternmatching definitions folnitio a certain format,calat the "General Schem ..."
Abstract

Cited by 821 (23 self)
 Add to MetaCart
In a previous work ("Abstract Data Type Systems", TCS 173(2), 1997), the leI two authors presented a combined lmbined made of a (strongl normal3zG9 alrmal rewrite system and a typed #calA#Ik enriched by patternmatching definitions folnitio a certain format,calat the "General Schema", whichgeneral39I theusual recursor definitions fornatural numbers and simil9 "basic inductive types". This combined lmbined was shown to bestrongl normalIk39f The purpose of this paper is toreformul33 and extend theGeneral Schema in order to make it easil extensibl3 to capture a more general cler of inductive types, cals, "strictly positive", and to ease the strong normalgAg9Ik proof of theresulGGg system. Thisresul provides a computation model for the combination of anal"DAfGI specification language based on abstract data types and of astrongl typed functional language with strictly positive inductive types.
Term Rewriting Systems
, 1992
"... Term Rewriting Systems play an important role in various areas, such as abstract data type specifications, implementations of functional programming languages and automated deduction. In this chapter we introduce several of the basic comcepts and facts for TRS's. Specifically, we discuss Abstra ..."
Abstract

Cited by 610 (18 self)
 Add to MetaCart
Term Rewriting Systems play an important role in various areas, such as abstract data type specifications, implementations of functional programming languages and automated deduction. In this chapter we introduce several of the basic comcepts and facts for TRS's. Specifically, we discuss Abstract Reduction Systems
Termination of Term Rewriting Using Dependency Pairs
 Comput. Sci
, 2000
"... We present techniques to prove termination and innermost termination of term rewriting systems automatically. In contrast to previous approaches, we do not compare left and righthand sides of rewrite rules, but introduce the notion of dependency pairs to compare lefthand sides with special subter ..."
Abstract

Cited by 267 (50 self)
 Add to MetaCart
We present techniques to prove termination and innermost termination of term rewriting systems automatically. In contrast to previous approaches, we do not compare left and righthand sides of rewrite rules, but introduce the notion of dependency pairs to compare lefthand sides with special subterms of the righthand sides. This results in a technique which allows to apply existing methods for automated termination proofs to term rewriting systems where they failed up to now. In particular, there are numerous term rewriting systems where a direct termination proof with simplification orderings is not possible, but in combination with our technique, wellknown simplification orderings (such as the recursive path ordering, polynomial orderings, or the KnuthBendix ordering) can now be used to prove termination automatically. Unlike previous methods, our technique for proving innermost termination automatically can also be applied to prove innermost termination of term rewriting systems that are not terminating. Moreover, as innermost termination implies termination for certain classes of term rewriting systems, this technique can also be used for termination proofs of such systems.
Improvements To Propositional Satisfiability Search Algorithms
, 1995
"... ... quickly across a wide range of hard SAT problems than any other SAT tester in the literature on comparable platforms. On a Sun SPARCStation 10 running SunOS 4.1.3 U1, POSIT can solve hard random 400variable 3SAT problems in about 2 hours on the average. In general, it can solve hard nvariable ..."
Abstract

Cited by 174 (0 self)
 Add to MetaCart
... quickly across a wide range of hard SAT problems than any other SAT tester in the literature on comparable platforms. On a Sun SPARCStation 10 running SunOS 4.1.3 U1, POSIT can solve hard random 400variable 3SAT problems in about 2 hours on the average. In general, it can solve hard nvariable random 3SAT problems with search trees of size O(2 n=18:7 ). In addition to justifying these claims, this dissertation describes the most significant achievements of other researchers in this area, and discusses all of the widely known general techniques for speeding up SAT search algorithms. It should be useful to anyone interested in NPcomplete problems or combinatorial optimization in general, and it should be particularly useful to researchers in either Artificial Intelligence or Operations Research.
Algorithms for the Satisfiability (SAT) Problem: A Survey
 DIMACS Series in Discrete Mathematics and Theoretical Computer Science
, 1996
"... . The satisfiability (SAT) problem is a core problem in mathematical logic and computing theory. In practice, SAT is fundamental in solving many problems in automated reasoning, computeraided design, computeraided manufacturing, machine vision, database, robotics, integrated circuit design, compute ..."
Abstract

Cited by 145 (3 self)
 Add to MetaCart
(Show Context)
. The satisfiability (SAT) problem is a core problem in mathematical logic and computing theory. In practice, SAT is fundamental in solving many problems in automated reasoning, computeraided design, computeraided manufacturing, machine vision, database, robotics, integrated circuit design, computer architecture design, and computer network design. Traditional methods treat SAT as a discrete, constrained decision problem. In recent years, many optimization methods, parallel algorithms, and practical techniques have been developed for solving SAT. In this survey, we present a general framework (an algorithm space) that integrates existing SAT algorithms into a unified perspective. We describe sequential and parallel SAT algorithms including variable splitting, resolution, local search, global optimization, mathematical programming, and practical SAT algorithms. We give performance evaluation of some existing SAT algorithms. Finally, we provide a set of practical applications of the sat...
Completion Without Failure
, 1989
"... We present an "unfailing" extension of the standard KnuthBendix completion procedure that is guaranteed to produce a desired canonical system, provided certain conditions are met. Weprove that this unfailing completion method is refutationally complete for theorem proving in equational the ..."
Abstract

Cited by 140 (21 self)
 Add to MetaCart
We present an "unfailing" extension of the standard KnuthBendix completion procedure that is guaranteed to produce a desired canonical system, provided certain conditions are met. Weprove that this unfailing completion method is refutationally complete for theorem proving in equational theories. The method can also be applied to Horn clauses with equality, in which case it corresponds to positive unit resolution plus oriented paramodulation, with unrestricted simplification.
Reasoning about Termination of Pure Prolog Programs
 Information and Computation
, 1993
"... We provide a theoretical basis for studying termination of (general) logic programs with the Prolog selection rule. To this end we study the class of left terminating programs. These are logic programs that terminate with the Prolog selection rule for all ground goals. We offer a characterization of ..."
Abstract

Cited by 127 (14 self)
 Add to MetaCart
(Show Context)
We provide a theoretical basis for studying termination of (general) logic programs with the Prolog selection rule. To this end we study the class of left terminating programs. These are logic programs that terminate with the Prolog selection rule for all ground goals. We offer a characterization of left terminating positive programs by means of the notion of an acceptable program that provides us with a practical method of proving termination. The method is illustrated by giving a simple proof of termination of the quicksort program for the desired class of goals. Then we extend this approach to the class of general logic programs by modifying the concept of acceptability. We prove that acceptable general programs are left terminating. The converse implication does not hold but we show that under the assumption of nonfloundering from ground goals every left terminating general program is acceptable. Finally, we prove that various ways of defining semantics coincide for acceptable gen...