Results 1  10
of
910
On Model Selection Consistency of Lasso
, 2006
"... Sparsity or parsimony of statistical models is crucial for their proper interpretations, as in sciences and social sciences. Model selection is a commonly used method to find such models, but usually involves a computationally heavy combinatorial search. Lasso (Tibshirani, 1996) is now being used ..."
Abstract

Cited by 462 (23 self)
 Add to MetaCart
(Show Context)
Sparsity or parsimony of statistical models is crucial for their proper interpretations, as in sciences and social sciences. Model selection is a commonly used method to find such models, but usually involves a computationally heavy combinatorial search. Lasso (Tibshirani, 1996) is now being used as a computationally feasible alternative to model selection.
Sparsity and smoothness via the fused lasso
 Journal of the Royal Statistical Society Series B
, 2005
"... The lasso (Tibshirani 1996) penalizes a least squares regression by the sum of the absolute values (L1 norm) of the coefficients. The form of this penalty encourages sparse solutions, that is, having many coefficients equal to zero. Here we propose the “fused lasso”, a generalization of the lasso de ..."
Abstract

Cited by 322 (17 self)
 Add to MetaCart
(Show Context)
The lasso (Tibshirani 1996) penalizes a least squares regression by the sum of the absolute values (L1 norm) of the coefficients. The form of this penalty encourages sparse solutions, that is, having many coefficients equal to zero. Here we propose the “fused lasso”, a generalization of the lasso designed for problems with features that can be ordered in some meaningful way. The fused lasso penalizes both the L1 norm of the coefficients and their successive differences. Thus it encourages both sparsity
Forecasting and Conditional Projection Using Realistic Prior Distributions,Econometric Review
, 1984
"... in Economic Fluctuations. Any opinions expressed are those of the ..."
Abstract

Cited by 288 (7 self)
 Add to MetaCart
in Economic Fluctuations. Any opinions expressed are those of the
A Shrinkage Approach to LargeScale Covariance Matrix Estimation and Implications for Functional Genomics
, 2005
"... ..."
Regularized estimation of large covariance matrices
 Ann. Statist
, 2008
"... This paper considers estimating a covariance matrix of p variables from n observations by either banding or tapering the sample covariance matrix, or estimating a banded version of the inverse of the covariance. We show that these estimates are consistent in the operator norm as long as (log p)/n → ..."
Abstract

Cited by 196 (14 self)
 Add to MetaCart
(Show Context)
This paper considers estimating a covariance matrix of p variables from n observations by either banding or tapering the sample covariance matrix, or estimating a banded version of the inverse of the covariance. We show that these estimates are consistent in the operator norm as long as (log p)/n → 0, and obtain explicit rates. The results are uniform over some fairly natural wellconditioned families of covariance matrices. We also introduce an analogue of the Gaussian white noise model and show that if the population covariance is embeddable in that model and wellconditioned, then the banded approximations produce consistent estimates of the eigenvalues and associated eigenvectors of the covariance matrix. The results can be extended to smooth versions of banding and to nonGaussian distributions with sufficiently short tails. A resampling approach is proposed for choosing the banding parameter in practice. This approach is illustrated numerically on both simulated and real data. 1. Introduction. Estimation
Penalized regressions: the bridge versus the lasso
 Journal of Computational and Graphical Statistics
, 1998
"... ..."
On the Generalization Ability of Online Learning Algorithms
 IEEE Transactions on Information Theory
, 2001
"... In this paper we show that online algorithms for classification and regression can be naturally used to obtain hypotheses with good datadependent tail bounds on their risk. Our results are proven without requiring complicated concentrationofmeasure arguments and they hold for arbitrary onlin ..."
Abstract

Cited by 184 (8 self)
 Add to MetaCart
(Show Context)
In this paper we show that online algorithms for classification and regression can be naturally used to obtain hypotheses with good datadependent tail bounds on their risk. Our results are proven without requiring complicated concentrationofmeasure arguments and they hold for arbitrary online learning algorithms. Furthermore, when applied to concrete online algorithms, our results yield tail bounds that in many cases are comparable or better than the best known bounds.
Transformation Invariance in Pattern Recognition  Tangent Distance and Tangent Propagation
 Lecture Notes in Computer Science
, 1998
"... . In pattern recognition, statistical modeling, or regression, the amount of data is a critical factor affecting the performance. If the amount of data and computational resources are unlimited, even trivial algorithms will converge to the optimal solution. However, in the practical case, given ..."
Abstract

Cited by 161 (2 self)
 Add to MetaCart
(Show Context)
. In pattern recognition, statistical modeling, or regression, the amount of data is a critical factor affecting the performance. If the amount of data and computational resources are unlimited, even trivial algorithms will converge to the optimal solution. However, in the practical case, given limited data and other resources, satisfactory performance requires sophisticated methods to regularize the problem by introducing a priori knowledge. Invariance of the output with respect to certain transformations of the input is a typical example of such a priori knowledge. In this chapter, we introduce the concept of tangent vectors, which compactly represent the essence of these transformation invariances, and two classes of algorithms, "tangent distance" and "tangent propagation", which make use of these invariances to improve performance. 1 Introduction Pattern Recognition is one of the main tasks of biological information processing systems, and a major challenge of compute...
The composite absolute penalties family for grouped and hierarchical variable selection
 Ann. Statist
"... Extracting useful information from highdimensional data is an important focus of today’s statistical research and practice. Penalized loss function minimization has been shown to be effective for this task both theoretically and empirically. With the virtues of both regularization and sparsity, the ..."
Abstract

Cited by 144 (3 self)
 Add to MetaCart
(Show Context)
Extracting useful information from highdimensional data is an important focus of today’s statistical research and practice. Penalized loss function minimization has been shown to be effective for this task both theoretically and empirically. With the virtues of both regularization and sparsity, the L1penalized squared error minimization method Lasso has been popular in regression models and beyond. In this paper, we combine different norms including L1 to form an intelligent penalty in order to add side information to the fitting of a regression or classification model to obtain reasonable estimates. Specifically, we introduce the Composite Absolute Penalties (CAP) family, which allows given grouping and hierarchical relationships between the predictors to be expressed. CAP penalties are built by defining groups and combining the properties of norm penalties at the acrossgroup and withingroup levels. Grouped selection occurs for nonoverlapping groups. Hierarchical variable selection is reached
Piecewise linear regularized solution paths
 Ann. Statist
, 2007
"... We consider the generic regularized optimization problem ˆ β(λ) = arg minβ L(y, Xβ) + λJ(β). Recently, Efron et al. (2004) have shown that for the Lasso – that is, if L is squared error loss and J(β) = ‖β‖1 is the l1 norm of β – the optimal coefficient path is piecewise linear, i.e., ∂ ˆ β(λ)/∂λ i ..."
Abstract

Cited by 138 (9 self)
 Add to MetaCart
(Show Context)
We consider the generic regularized optimization problem ˆ β(λ) = arg minβ L(y, Xβ) + λJ(β). Recently, Efron et al. (2004) have shown that for the Lasso – that is, if L is squared error loss and J(β) = ‖β‖1 is the l1 norm of β – the optimal coefficient path is piecewise linear, i.e., ∂ ˆ β(λ)/∂λ is piecewise constant. We derive a general characterization of the properties of (loss L, penalty J) pairs which give piecewise linear coefficient paths. Such pairs allow for efficient generation of the full regularized coefficient paths. We investigate the nature of efficient path following algorithms which arise. We use our results to suggest robust versions of the Lasso for regression and classification, and to develop new, efficient algorithms for existing problems in the literature, including Mammen & van de Geer’s Locally Adaptive Regression Splines. 1