Results 1  10
of
452
Adaptive Constraint Satisfaction
 WORKSHOP OF THE UK PLANNING AND SCHEDULING
, 1996
"... Many different approaches have been applied to constraint satisfaction. These range from complete backtracking algorithms to sophisticated distributed configurations. However, most research effort in the field of constraint satisfaction algorithms has concentrated on the use of a single algorithm fo ..."
Abstract

Cited by 953 (43 self)
 Add to MetaCart
Many different approaches have been applied to constraint satisfaction. These range from complete backtracking algorithms to sophisticated distributed configurations. However, most research effort in the field of constraint satisfaction algorithms has concentrated on the use of a single algorithm for solving all problems. At the same time, a consensus appears to have developed to the effect that it is unlikely that any single algorithm is always the best choice for all classes of problem. In this paper we argue that an adaptive approach should play an important part in constraint satisfaction. This approach relaxes the commitment to using a single algorithm once search commences. As a result, we claim that it is possible to undertake a more focused approach to problem solving, allowing for the correction of bad algorithm choices and for capitalising on opportunities for gain by dynamically changing to more suitable candidates.
The Computational Complexity of Propositional STRIPS Planning
 Artificial Intelligence
, 1994
"... I present several computational complexity results for propositional STRIPS planning, i.e., STRIPS planning restricted to ground formulas. Different planning problems can be defined by restricting the type of formulas, placing limits on the number of pre and postconditions, by restricting negation ..."
Abstract

Cited by 363 (3 self)
 Add to MetaCart
(Show Context)
I present several computational complexity results for propositional STRIPS planning, i.e., STRIPS planning restricted to ground formulas. Different planning problems can be defined by restricting the type of formulas, placing limits on the number of pre and postconditions, by restricting negation in pre and postconditions, and by requiring optimal plans. For these types of restrictions, I show when planning is tractable (polynomial) and intractable (NPhard) . In general, it is PSPACEcomplete to determine if a given planning instance has any solutions. Extremely severe restrictions on both the operators and the formulas are required to guarantee polynomial time or even NPcompleteness. For example, when only ground literals are permitted, determining plan existence is PSPACEcomplete even if operators are limited to two preconditions and two postconditions. When definite Horn ground formulas are permitted, determining plan existence is PSPACEcomplete even if operators are limited t...
The Distributed Constraint Satisfaction Problem: Formalization and Algorithms
 IEEE Transactions on Knowledge and Data Engineering
, 1998
"... In this paper, we develop a formalism called a distributed constraint satisfaction problem (distributed CSP) and algorithms for solving distributed CSPs. A distributed CSP is a constraint satisfaction problem in which variables and constraints are distributed among multiple agents. Various applica ..."
Abstract

Cited by 325 (28 self)
 Add to MetaCart
(Show Context)
In this paper, we develop a formalism called a distributed constraint satisfaction problem (distributed CSP) and algorithms for solving distributed CSPs. A distributed CSP is a constraint satisfaction problem in which variables and constraints are distributed among multiple agents. Various application problems in Distributed Artificial Intelligence can be formalized as distributed CSPs. We present our newly developed technique called asynchronous backtracking that allows agents to act asynchronously and concurrently without any global control, while guaranteeing the completeness of the algorithm. Furthermore, we describe how the asynchronous backtracking algorithm can be modified into a more efficient algorithm called an asynchronous weakcommitment search, which can revise a bad decision without exhaustive search by changing the priority order of agents dynamically. The experimental results on various example problems show that the asynchronous weakcommitment search algorithm ...
Algorithms for Distributed Constraint Satisfaction: A Review
 In CP
, 2000
"... . When multiple agents are in a shared environment, there usually exist constraints among the possible actions of these agents. A distributed constraint satisfaction problem (distributed CSP) is a problem to find a consistent combination of actions that satisfies these interagent constraints. Vario ..."
Abstract

Cited by 250 (11 self)
 Add to MetaCart
(Show Context)
. When multiple agents are in a shared environment, there usually exist constraints among the possible actions of these agents. A distributed constraint satisfaction problem (distributed CSP) is a problem to find a consistent combination of actions that satisfies these interagent constraints. Various application problems in multiagent systems can be formalized as distributed CSPs. This paper gives an overview of the existing research on distributed CSPs. First, we briefly describe the problem formalization and algorithms of normal, centralized CSPs. Then, we show the problem formalization and several MAS application problems of distributed CSPs. Furthermore, we describe a series of algorithms for solving distributed CSPs, i.e., the asynchronous backtracking, the asynchronous weakcommitment search, the distributed breakout, and distributed consistency algorithms. Finally,we showtwo extensions of the basic problem formalization of distributed CSPs, i.e., handling multiple local variables, and dealing with overconstrained problems. Keywords: Constraint Satisfaction, Search, distributed AI 1.
A Survey of Automated Timetabling
, 1999
"... The timetabling problem consists in scheduling a sequence of lectures between teachers and students in a prefixed period of time (typically a week), satisfying a set of constraints of various types. A large number of variants of the timetabling problem have been proposed in the literature, which d ..."
Abstract

Cited by 194 (16 self)
 Add to MetaCart
The timetabling problem consists in scheduling a sequence of lectures between teachers and students in a prefixed period of time (typically a week), satisfying a set of constraints of various types. A large number of variants of the timetabling problem have been proposed in the literature, which differ from each other based on the type of institution involved (university or school) and the type of constraints. This problem, that has been traditionally considered in the operational research field, has recently been tackled with techniques belonging also to Artificial Intelligence (e.g., genetic algorithms, tabu search, and constraint satisfaction). In this paper, we survey the various formulations of the problem, and the techniques and algorithms used for its solution.
Nogood Recording for Static and Dynamic Constraint Satisfaction Problems
 International Journal of Artificial Intelligence Tools
, 1993
"... Many AI synthesis problems such as planning, scheduling or design may be encoded in a constraint satisfaction problem (CSP). A CSP is typically defined as the problem of finding any consistent labeling for a fixed set of variables satisfying all given constraints between these variables. However, fo ..."
Abstract

Cited by 120 (5 self)
 Add to MetaCart
Many AI synthesis problems such as planning, scheduling or design may be encoded in a constraint satisfaction problem (CSP). A CSP is typically defined as the problem of finding any consistent labeling for a fixed set of variables satisfying all given constraints between these variables. However, for many real tasks, the set of constraints to consider may evolve because of the environment or because of user interactions. The problem we consider here is the solution maintenance problem in such a dynamic CSP (DCSP). We propose a new class of constraint recording algorithms called Nogood Recording that may be used for solving both static and dynamic CSPs. It offers an interesting compromise, polynomially bounded in space, between an ATMSlike approach and the usual static constraint satisfaction algorithms. 1 Introduction The constraint satisfaction problem (CSP) model is widely used to represent and solve various AI related problems and provides fundamental tools in areas such as truth...
Bridging the gap between planning and scheduling
 KNOWLEDGE ENGINEERING REVIEW
, 2000
"... Planning research in Artificial Intelligence (AI) has often focused on problems where there are cascading levels of action choice and complex interactions between actions. In contrast, Scheduling research has focused on much larger problems where there is little action choice, but the resulting orde ..."
Abstract

Cited by 118 (12 self)
 Add to MetaCart
(Show Context)
Planning research in Artificial Intelligence (AI) has often focused on problems where there are cascading levels of action choice and complex interactions between actions. In contrast, Scheduling research has focused on much larger problems where there is little action choice, but the resulting ordering problem is hard. In this paper, we give an overview of AI planning and scheduling techniques, focusing on their similarities, differences, and limitations. We also argue that many difficult practical problems lie somewhere between planning and scheduling, and that neither area has the right set of tools for solving these vexing problems.
Backtracking Algorithms for Disjunctions of Temporal Constraints
 Artificial Intelligence
, 1998
"... We extend the framework of simple temporal problems studied originally by Dechter, Meiri and Pearl to consider constraints of the form x1 \Gamma y1 r1 : : : xn \Gamma yn rn , where x1 : : : xn ; y1 : : : yn are variables ranging over the real numbers, r1 : : : rn are real constants, and n 1. W ..."
Abstract

Cited by 118 (2 self)
 Add to MetaCart
We extend the framework of simple temporal problems studied originally by Dechter, Meiri and Pearl to consider constraints of the form x1 \Gamma y1 r1 : : : xn \Gamma yn rn , where x1 : : : xn ; y1 : : : yn are variables ranging over the real numbers, r1 : : : rn are real constants, and n 1. We have implemented four progressively more efficient algorithms for the consistency checking problem for this class of temporal constraints. We have partially ordered those algorithms according to the number of visited search nodes and the number of performed consistency checks. Finally, we have carried out a series of experimental results on the location of the hard region. The results show that hard problems occur at a critical value of the ratio of disjunctions to variables. This value is between 6 and 7. Introduction Reasoning with temporal constraints has been a hot research topic for the last fifteen years. The importance of this problem has been demonstrated in many areas of artifici...
Practical Applications of Constraint Programming
 CONSTRAINTS
, 1996
"... Constraint programming is newly flowering in industry. Several companies have recently started up to exploit the technology, and the number of industrial applications is now growing very quickly. This survey will seek, by examples, ..."
Abstract

Cited by 111 (1 self)
 Add to MetaCart
Constraint programming is newly flowering in industry. Several companies have recently started up to exploit the technology, and the number of industrial applications is now growing very quickly. This survey will seek, by examples,
Sequential ModelBased Optimization for General Algorithm Configuration (extended version)
"... Abstract. Stateoftheart algorithms for hard computational problems often expose many parameters that can be modified to improve empirical performance. However, manually exploring the resulting combinatorial space of parameter settings is tedious and tends to lead to unsatisfactory outcomes. Recen ..."
Abstract

Cited by 106 (27 self)
 Add to MetaCart
(Show Context)
Abstract. Stateoftheart algorithms for hard computational problems often expose many parameters that can be modified to improve empirical performance. However, manually exploring the resulting combinatorial space of parameter settings is tedious and tends to lead to unsatisfactory outcomes. Recently, automated approaches for solving this algorithm configuration problem have led to substantial improvements in the state of the art for solving various problems. One promising approach constructs explicit regression models to describe the dependence of target algorithm performance on parameter settings; however, this approach has so far been limited to the optimization of few numerical algorithm parameters on single instances. In this paper, we extend this paradigm for the first time to general algorithm configuration problems, allowing many categorical parameters and optimization for sets of instances. We experimentally validate our new algorithm configuration procedure by optimizing a local search and a tree search solver for the propositional satisfiability problem (SAT), as well as the commercial mixed integer programming (MIP) solver CPLEX. In these experiments, our procedure yielded stateoftheart performance, and in many cases outperformed the previous best configuration approach. 1