Results 1 
2 of
2
A BIASED RANDOMKEY GENETIC ALGORITHM FOR ROUTING AND WAVELENGTH ASSIGNMENT
, 2010
"... The problem of routing and wavelength assignment (RWA) in wavelength division multiplexing (WDM) optical networks consists in routing a set of lightpaths and assigning a wavelength to each of them, such that lightpaths whose routes share a common fiber are assigned different wavelengths. This probl ..."
Abstract

Cited by 7 (3 self)
 Add to MetaCart
(Show Context)
The problem of routing and wavelength assignment (RWA) in wavelength division multiplexing (WDM) optical networks consists in routing a set of lightpaths and assigning a wavelength to each of them, such that lightpaths whose routes share a common fiber are assigned different wavelengths. This problem was shown to be NPhard when the objective is to minimize the total number of wavelengths used. We propose a genetic algorithm with random keys for routing and wavelength assignment with the goal of minimizing the number of different wavelengths used in the assignment. This algorithm extends the best heuristic in the literature by embedding it into an evolutionary framework. Computational results show that the new heuristic improves the stateoftheart algorithms in the literature.
A GENETIC ALGORITHM WITH RANDOM KEYS FOR ROUTING AND WAVELENGTH ASSIGNMENT
"... Abstract. The problem of routing and wavelength assignment (RWA) in wavelength division multiplexing (WDM) optical networks consists in routing a set of lightpaths and assigning a wavelength to each of them, such that lightpaths whose routes share a common fiber are assigned different wavelengths. T ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
(Show Context)
Abstract. The problem of routing and wavelength assignment (RWA) in wavelength division multiplexing (WDM) optical networks consists in routing a set of lightpaths and assigning a wavelength to each of them, such that lightpaths whose routes share a common fiber are assigned different wavelengths. This problem was shown to be NPhard when the objective is to minimize the total number of wavelengths used. In this paper, we propose a genetic algorithm with random keys for routing and wavelength assignment with the goal of minimizing the number of different wavelengths used in the assignment. This algorithm extends the best heuristic in the literature by embedding it into an evolutionary framework. Computational results show that the new heuristic improves the stateoftheart algorithms in the literature. 1.