Results 1  10
of
3,876
A calculus of mobile processes, I
, 1992
"... We present the acalculus, a calculus of communicating systems in which one can naturally express processes which have changing structure. Not only may the component agents of a system be arbitrarily linked, but a communication between neighbours may carry information which changes that linkage. The ..."
Abstract

Cited by 1183 (31 self)
 Add to MetaCart
We present the acalculus, a calculus of communicating systems in which one can naturally express processes which have changing structure. Not only may the component agents of a system be arbitrarily linked, but a communication between neighbours may carry information which changes that linkage. The calculus is an extension of the process algebra CCS, following work by Engberg and Nielsen, who added mobility to CCS while preserving its algebraic properties. The rrcalculus gains simplicity by removing all distinction between variables and constants; communication links are identified by names, and computation is represented purely as the communication of names across links. After an illustrated description of how the ncalculus generalises conventional process algebras in treating mobility, several examples exploiting mobility are given in some detail. The important examples are the encoding into the ncalculus of higherorder functions (the Icalculus and combinatory algebra), the transmission of processes as values, and the representation of data structures as processes. The paper continues by presenting the algebraic theory of strong bisimilarity and strong equivalence, including a new notion of equivalence indexed by distinctionsi.e., assumptions of inequality among names. These theories are based upon a semantics in terms of a labeled transition system and a notion of strong bisimulation, both of which are expounded in detail in a companion paper. We also report briefly on workinprogress based upon the corresponding notion of weak bisimulation, in which internal actions cannot be observed.
A calculus for cryptographic protocols: The spi calculus
 Information and Computation
, 1999
"... We introduce the spi calculus, an extension of the pi calculus designed for the description and analysis of cryptographic protocols. We show how to use the spi calculus, particularly for studying authentication protocols. The pi calculus (without extension) suffices for some abstract protocols; the ..."
Abstract

Cited by 919 (55 self)
 Add to MetaCart
(Show Context)
We introduce the spi calculus, an extension of the pi calculus designed for the description and analysis of cryptographic protocols. We show how to use the spi calculus, particularly for studying authentication protocols. The pi calculus (without extension) suffices for some abstract protocols; the spi calculus enables us to consider cryptographic issues in more detail. We represent protocols as processes in the spi calculus and state their security properties in terms of coarsegrained notions of protocol equivalence.
Universally composable security: A new paradigm for cryptographic protocols
, 2013
"... We present a general framework for representing cryptographic protocols and analyzing their security. The framework allows specifying the security requirements of practically any cryptographic task in a unified and systematic way. Furthermore, in this framework the security of protocols is preserved ..."
Abstract

Cited by 842 (43 self)
 Add to MetaCart
(Show Context)
We present a general framework for representing cryptographic protocols and analyzing their security. The framework allows specifying the security requirements of practically any cryptographic task in a unified and systematic way. Furthermore, in this framework the security of protocols is preserved under a general protocol composition operation, called universal composition. The proposed framework with its securitypreserving composition operation allows for modular design and analysis of complex cryptographic protocols from relatively simple building blocks. Moreover, within this framework, protocols are guaranteed to maintain their security in any context, even in the presence of an unbounded number of arbitrary protocol instances that run concurrently in an adversarially controlled manner. This is a useful guarantee, that allows arguing about the security of cryptographic protocols in complex and unpredictable environments such as modern communication networks.
Specifying Distributed Software Architectures
, 1995
"... There is a real need for clear and sound design specifications of distributed systems at the architectural level. This is the level of the design which deals with the highlevel organisation of computational elements and the interactions between those elements. The paper presents the Darwin notation ..."
Abstract

Cited by 427 (23 self)
 Add to MetaCart
(Show Context)
There is a real need for clear and sound design specifications of distributed systems at the architectural level. This is the level of the design which deals with the highlevel organisation of computational elements and the interactions between those elements. The paper presents the Darwin notation for specifying this highlevel organisation. Darwin is in essence a declarative binding language which can be used to define hierarchic compositions of interconnected components. Distribution is dealt with orthogonally to system structuring. The language supports the specification of both static structures and dynamic structures which may evolve during execution. The central abstractions managed by Darwin are components and services. Services are the means by which components interact. In addition to its use in specifying the architecture of a distributed system, Darwin has an operational semantics for the elaboration of specifications such that they may be used at runtime to di...
A Query Language and Optimization Techniques for Unstructured Data
, 1996
"... A new kind of data model has recently emerged in which the database is not constrained by a conventional schema. Systems like ACeDB, which has become very popular with biologists, and the recent Tsimmis proposal for data integration organize data in treelike structures whose components can be used ..."
Abstract

Cited by 409 (35 self)
 Add to MetaCart
A new kind of data model has recently emerged in which the database is not constrained by a conventional schema. Systems like ACeDB, which has become very popular with biologists, and the recent Tsimmis proposal for data integration organize data in treelike structures whose components can be used equally well to represent sets and tuples. Such structures allow great flexibility in data representation What query language is appropriate for such structures? Here we propose a simple language UnQL for querying data organized as a rooted, edgelabeled graph. In this model, relational data may be represented as fixeddepth trees, and on such trees UnQL is equivalent to the relational algebra. The novelty of UnQL consists in its programming constructs for arbitrarily deep data and for cyclic structures. While strictly more powerful than query languages with path expressions like XSQL, UnQL can still be efficiently evaluated. We describe new optimization techniques for the deep or "vertical" dimension of UnQL queries. Furthermore, we show that known optimization techniques for operators on flat relations apply to the "horizontal" dimension of UnQL.
An Object Calculus for Asynchronous Communication
 Proceedings of the European Conference on ObjectOriented Programming (ECOOP
, 1991
"... This paper presents a formal system based on the notion of objects and asynchronous communication. Built on Milner's work on ßcalculus, the communication primitive of the formal system is purely asynchronous, which makes it unique among various concurrency formalisms. Computationally this resu ..."
Abstract

Cited by 392 (34 self)
 Add to MetaCart
(Show Context)
This paper presents a formal system based on the notion of objects and asynchronous communication. Built on Milner's work on ßcalculus, the communication primitive of the formal system is purely asynchronous, which makes it unique among various concurrency formalisms. Computationally this results in a consistent reduction of Milner's calculus, while retaining the same expressive power. Seen semantically asynchronous communication induces a surprisingly different framework where bisimulation is strictly more general than its synchronous counterpart. This paper shows basic construction of the formal system along with several illustrative examples. 1 Introduction The formal system introduced in this paper is intended to accomplish two purposes. First, it provides a simple and rigorous formalism which encapsulates essential features of concurrent objectorientation [26, 25]. Being successful as a programming methodology for dynamic concurrent computing, its theoretical contents are far f...
Probabilistic Simulations for Probabilistic Processes
, 1994
"... Several probabilistic simulation relations for probabilistic systems are defined and evaluated according to two criteria: compositionality and preservation of "interesting" properties. Here, the interesting properties of a system are identified with those that are expressible in an untimed ..."
Abstract

Cited by 367 (22 self)
 Add to MetaCart
(Show Context)
Several probabilistic simulation relations for probabilistic systems are defined and evaluated according to two criteria: compositionality and preservation of "interesting" properties. Here, the interesting properties of a system are identified with those that are expressible in an untimed version of the Timed Probabilistic concurrent Computation Tree Logic (TPCTL) of Hansson. The definitions are made, and the evaluations carried out, in terms of a general labeled transition system model for concurrent probabilistic computation. The results cover weak simulations, which abstract from internal computation, as well as strong simulations, which do not.
Principles and methods of Testing Finite State Machines  a survey
 PROCEEDINGS OF IEEE
, 1996
"... With advanced computer technology, systems are getting larger to fulfill more complicated tasks, however, they are also becoming less reliable. Consequently, testing is an indispensable part of system design and implementation; yet it has proved to be a formidable task for complex systems. This moti ..."
Abstract

Cited by 334 (14 self)
 Add to MetaCart
(Show Context)
With advanced computer technology, systems are getting larger to fulfill more complicated tasks, however, they are also becoming less reliable. Consequently, testing is an indispensable part of system design and implementation; yet it has proved to be a formidable task for complex systems. This motivates the study of testing finite state machines to ensure the correct functioning of systems and to discover aspects of their behavior. A finite state machine contains a finite number of states and produces outputs on state transitions after receiving inputs. Finite state machines are widely used to model systems in diverse areas, including sequential circuits, certain types of programs, and, more recently, communication protocols. In a testing problem we have a machine about which we lack some information; we would like to deduce this information by providing a sequence of inputs to the machine and observing the outputs produced. Because of its practical importance and theoretical interest, the problem of testing finite state machines has been studied in different areas and at various times. The earliest published literature on this topic dates back to the 50’s. Activities in the 60’s and early 70’s were motivated mainly by automata theory and sequential circuit testing. The area seemed to have mostly died down until a few years ago when the testing problem was resurrected and is now being studied anew due to its applications to conformance testing of communication protocols. While some old problems which had been open for decades were resolved recently, new concepts and more intriguing problems from new applications emerge. We review the fundamental problems in testing finite state machines and techniques for solving these problems, tracing progress in the area from its inception to the present and the state of the art. In addition, we discuss extensions of finite state machines and some other topics related to testing.
Index Structures for Path Expressions
, 1997
"... In recent years there has been an increased interest in managing data which does not conform to traditional data models, like the relational or object oriented model. The reasons for this nonconformance are diverse. One one hand, data may not conform to such models at the physical level: it may be ..."
Abstract

Cited by 330 (8 self)
 Add to MetaCart
In recent years there has been an increased interest in managing data which does not conform to traditional data models, like the relational or object oriented model. The reasons for this nonconformance are diverse. One one hand, data may not conform to such models at the physical level: it may be stored in data exchange formats, fetched from the Internet, or stored as structured les. One the other hand, it may not conform at the logical level: data may have missing attributes, some attributes may be of di erent types in di erent data items, there may be heterogeneous collections, or the data may be simply specified by a schema which is too complex or changes too often to be described easily as a traditional schema. The term semistructured data has been used to refer to such data. The data model proposed for this kind of data consists of an edgelabeled graph, in which nodes correspond to objects and edges to attributes or values. Figure 1 illustrates a semistructured database providing information about a city. Relational databases are traditionally queried with associative queries, retrieving tuples based on the value of some attributes. To answer such queries efciently, database management systems support indexes for translating attribute values into tuple ids (e.g. Btrees or hash tables). In objectoriented databases, path queries replace the simpler associative queries. Several data structures have been proposed for answering path queries e ciently: e.g., access support relations 14] and path indexes 4]. In the case of semistructured data, queries are even more complex, because they may contain generalized path expressions 1, 7, 8, 16]. The additional exibility is needed in order to traverse data whose structure is irregular, or partially unknown to the user.
A Framework for Comparing Models of Computation
 IEEE Transactions on ComputerAided Design of Integrated Circuits and Systems
, 1998
"... Abstract—We give a denotational framework (a “meta model”) within which certain properties of models of computation can be compared. It describes concurrent processes in general terms as sets of possible behaviors. A process is determinate if, given the constraints imposed by the inputs, there are e ..."
Abstract

Cited by 323 (67 self)
 Add to MetaCart
(Show Context)
Abstract—We give a denotational framework (a “meta model”) within which certain properties of models of computation can be compared. It describes concurrent processes in general terms as sets of possible behaviors. A process is determinate if, given the constraints imposed by the inputs, there are exactly one or exactly zero behaviors. Compositions of processes are processes with behaviors in the intersection of the behaviors of the component processes. The interaction between processes is through signals, which are collections of events. Each event is a valuetag pair, where the tags can come from a partially ordered or totally ordered set. Timed models are where the set of tags is totally ordered. Synchronous events share the same tag, and synchronous signals contain events with the same set of tags. Synchronous processes have only synchronous signals as behaviors. Strict causality (in timed tag systems) and continuity (in untimed tag systems) ensure determinacy under certain technical conditions. The framework is used to compare certain essential features of various models of computation, including Kahn process networks, dataflow, sequential processes, concurrent sequential processes with rendezvous, Petri nets, and discreteevent systems. I.