Results 1  10
of
20
STABILIZED SEQUENTIAL QUADRATIC PROGRAMMING FOR OPTIMIZATION AND A STABILIZED NEWTONTYPE METHOD FOR VARIATIONAL PROBLEMS WITHOUT CONSTRAINT QUALIFICATIONS
, 2007
"... The stabilized version of the sequential quadratic programming algorithm (sSQP) had been developed in order to achieve fast convergence despite possible degeneracy of constraints of optimization problems, when the Lagrange multipliers associated to a solution are not unique. Superlinear convergence ..."
Abstract

Cited by 24 (14 self)
 Add to MetaCart
(Show Context)
The stabilized version of the sequential quadratic programming algorithm (sSQP) had been developed in order to achieve fast convergence despite possible degeneracy of constraints of optimization problems, when the Lagrange multipliers associated to a solution are not unique. Superlinear convergence of sSQP had been previously established under the secondorder sufficient condition for optimality (SOSC) and the MangasarianFromovitz constraint qualification, or under the strong secondorder sufficient condition for optimality (in that case, without constraint qualification assumptions). We prove a stronger superlinear convergence result than the above, assuming SOSC only. In addition, our analysis is carried out in the more general setting of variational problems, for which we introduce a natural extension of sSQP techniques. In the process, we also obtain a new error bound for KarushKuhnTucker systems for variational problems.
On attraction of Newtontype iterates to multipliers violating secondorder sufficiency conditions
, 2009
"... Assuming that the primal part of the sequence generated by a Newtontype (e.g., SQP) method applied to an equalityconstrained problem converges to a solution where the constraints are degenerate, we investigate whether the dual part of the sequence is attracted by those Lagrange multipliers which s ..."
Abstract

Cited by 20 (15 self)
 Add to MetaCart
Assuming that the primal part of the sequence generated by a Newtontype (e.g., SQP) method applied to an equalityconstrained problem converges to a solution where the constraints are degenerate, we investigate whether the dual part of the sequence is attracted by those Lagrange multipliers which satisfy secondorder sufficient condition (SOSC) for optimality, or by those multipliers which violate it. This question is relevant at least for two reasons: one is speed of convergence of standard methods; the other is applicability of some recently proposed approaches for handling degenerate constraints. We show that for the class of damped Newton methods, convergence of the dual sequence to multipliers satisfying SOSC is unlikely to occur. We support our findings by numerical experiments. We also suggest a simple auxiliary procedure for computing multiplier estimates, which does not have this
NEWTONTYPE METHODS FOR OPTIMIZATION PROBLEMS WITHOUT CONSTRAINT QUALIFICATIONS
 SIAM J. OPTIMIZATION
, 2004
"... We consider equalityconstrained optimization problems, where a given solution may not satisfy any constraint qualification, but satisfies the standard secondorder sufficient condition for optimality. Based on local identification of the rank of the constraints degeneracy via the singularvalue d ..."
Abstract

Cited by 17 (13 self)
 Add to MetaCart
(Show Context)
We consider equalityconstrained optimization problems, where a given solution may not satisfy any constraint qualification, but satisfies the standard secondorder sufficient condition for optimality. Based on local identification of the rank of the constraints degeneracy via the singularvalue decomposition, we derive a modified primaldual optimality system whose solution is locally unique, nondegenerate, and thus can be found by standard Newtontype techniques. Using identification of active constraints, we further extend our approach to mixed equality and inequalityconstrained problems, and to mathematical programs with complementarity constraints (MPCC). In particular, for MPCC we obtain a local algorithm with quadratic convergence under the secondorder sufficient condition only, without any constraint qualifications, not even the special MPCC constraint qualifications.
Examples of dual behaviour of Newtontype methods on optimization problems with degenerate constraints
 Computational Optimization and Applications
"... discuss possible scenarios of behaviour of the dual part of sequences generated by primaldual Newtontype methods when applied to optimization problems with nonunique multipliers associated to a solution. Those scenarios are: (a) failure of convergence of the dual sequence; (b) convergence to a so ..."
Abstract

Cited by 16 (10 self)
 Add to MetaCart
discuss possible scenarios of behaviour of the dual part of sequences generated by primaldual Newtontype methods when applied to optimization problems with nonunique multipliers associated to a solution. Those scenarios are: (a) failure of convergence of the dual sequence; (b) convergence to a socalled critical multiplier (which, in particular, violates some secondorder sufficient conditions for optimality), the latter appearing to be a typical scenario when critical multipliers exist; (c) convergence to a noncritical multiplier. The case of mathematical programs with complementarity constraints is also discussed. We illustrate those scenarios with examples, and discuss consequences for the speed of convergence. We also put together a collection of examples of optimization problems with constraints violating some standard constraint qualifications, intended for preliminary testing of existing algorithms on degenerate problems, or for developing special new algorithms designed to deal with constraints degeneracy. Keywords Degenerate constraints · Secondorder sufficiency · Newton method · SQP
INEXACT JOSEPHY–NEWTON FRAMEWORK FOR GENERERALIZED EQUATIONS AND ITS APPLICATIONS TO LOCAL ANALYSIS OF NEWTONIAN METHODS FOR CONSTRAINED OPTIMIZATION ∗
, 2008
"... We propose and analyze a perturbed version of the classical JosephyNewton method for solving generalized equations. This perturbed framework is convenient to treat in a unified way standard sequential quadratic programming, its stabilzed version, sequential quadratically constrained quadratic progr ..."
Abstract

Cited by 13 (8 self)
 Add to MetaCart
(Show Context)
We propose and analyze a perturbed version of the classical JosephyNewton method for solving generalized equations. This perturbed framework is convenient to treat in a unified way standard sequential quadratic programming, its stabilzed version, sequential quadratically constrained quadratic programming, and linearly constrained Lagrangian methods. For the linearly constrained Lagrangian methods, in particular, we obtain superlinear convergence under the secondorder sufficient optimality condition and the strict Mangasarian–Fromovitz constraint qualification, while previous results in the literature assume (in addition to secondorder sufficiency) the stronger linear independence constraint qualification as well as the strict complementarity condition. For the sequential quadratically constrained quadratic programming methods, we prove primaldual superlinear/quadratic convergence under the same assumptions as above, which also gives a new result.
SHARP PRIMAL SUPERLINEAR CONVERGENCE RESULTS FOR SOME NEWTONIAN METHODS FOR CONSTRAINED OPTIMIZATION
, 2009
"... As is well known, superlinear or quadratic convergence of the primaldual sequence generated by an optimization algorithm does not, in general, imply superlinear convergence of the primal part. Primal convergence, however, is often of particular interest. For the sequential quadratic programming (SQ ..."
Abstract

Cited by 9 (8 self)
 Add to MetaCart
(Show Context)
As is well known, superlinear or quadratic convergence of the primaldual sequence generated by an optimization algorithm does not, in general, imply superlinear convergence of the primal part. Primal convergence, however, is often of particular interest. For the sequential quadratic programming (SQP) algorithm, local primaldual quadratic convergence can be established under the assumptions of uniqueness of the Lagrange multiplier associated to the solution and the secondorder sufficient condition. At the same time, previous primal superlinear convergence results for SQP required to strengthen the first assumption to the linear independence constraint qualification. In this paper, we show that this strengthening of assumptions is actually not necessary. Specifically, we show that once primaldual convergence is assumed or already established, for primal superlinear rate one only needs a certain error bound estimate. This error bound holds, for example, under the secondorder sufficient condition, which is needed for primaldual local analysis in any case. Moreover, in some situations even secondorder sufficiency can be relaxed to the weaker assumption that the multiplier in question is noncritical. Our study is performed for a rather general perturbed SQP framework, which covers in addition to SQP and quasiNewton SQP some other algorithms as well. For example, as a byproduct,
Active set identification in Nonlinear Programming
 SIAM Journal on Optimization
, 2006
"... Abstract. Techniques that identify the active constraints at a solution of a nonlinear programming problem from a point near the solution can be a useful adjunct to nonlinear programming algorithms. They have the potential to improve the local convergence behavior of these algorithms, and in the bes ..."
Abstract

Cited by 8 (1 self)
 Add to MetaCart
(Show Context)
Abstract. Techniques that identify the active constraints at a solution of a nonlinear programming problem from a point near the solution can be a useful adjunct to nonlinear programming algorithms. They have the potential to improve the local convergence behavior of these algorithms, and in the best case can reduce an inequality constrained problem to an equality constrained problem with the same solution. This paper describes several techniques that do not require good Lagrange multiplier estimates for the constraints to be available a priori, but depend only on function and first derivative information. Computational tests comparing the effectiveness of these techniques on a variety of test problems are described. Many tests involve degenerate cases, in which the constraint gradients are not linearly independent and/or strict complementarity does not hold.
GLOBAL CONVERGENCE OF AUGMENTED LAGRANGIAN METHODS APPLIED TO OPTIMIZATION PROBLEMS WITH DEGENERATE CONSTRAINTS, INCLUDING PROBLEMS WITH COMPLEMENTARITY CONSTRAINTS
, 2012
"... We consider global convergence properties of the augmented Lagrangian methods on problems with degenerate constraints, with a special emphasis on mathematical programs with complementarity constraints (MPCC). In the general case, we show convergence to stationary points of the problem under an error ..."
Abstract

Cited by 7 (2 self)
 Add to MetaCart
(Show Context)
We consider global convergence properties of the augmented Lagrangian methods on problems with degenerate constraints, with a special emphasis on mathematical programs with complementarity constraints (MPCC). In the general case, we show convergence to stationary points of the problem under an error bound condition for the feasible set (which is weaker than constraint qualifications), assuming that the iterates have some modest features of approximate local minimizers of the augmented Lagrangian. For MPCC, we first argue that even weak forms of general constraint qualifications that are suitable for convergence of the augmented Lagrangian methods, such as the recently proposed relaxed positive linear dependence condition, should not be expected to hold and thus special analysis is needed. We next obtain a rather complete picture, showing that under the usual in this context MPCClinear independence constraint qualification accumulation points of the iterates are guaranteed to be Cstationary for MPCC (better than weakly stationary), but in general need not be Mstationary (hence, neither strongly stationary). However, strong stationarity is guaranteed if the generated dual sequence is bounded, which we show to be the typical
Stabilized SQP revisited
 MATH. PROGRAM., SER. A
, 2010
"... The stabilized version of the sequential quadratic programming algorithm (sSQP) had been developed in order to achieve superlinear convergence in situations when the Lagrange multipliers associated to a solution are not unique. Within the framework of Fischer (Math Program 94:91–124, 2002), the key ..."
Abstract

Cited by 3 (2 self)
 Add to MetaCart
The stabilized version of the sequential quadratic programming algorithm (sSQP) had been developed in order to achieve superlinear convergence in situations when the Lagrange multipliers associated to a solution are not unique. Within the framework of Fischer (Math Program 94:91–124, 2002), the key to local superlinear convergence of sSQP are the following two properties: upper Lipschitzian behavior of solutions of the KarushKuhnTucker (KKT) system under canonical perturbations and local solvability of sSQP subproblems with the associated primaldual step being of the order of the distance from the current iterate to the solution set of the unperturbed KKT system. According to Fernández and Solodov (Math Program 125:47–73, 2010), both of these properties are ensured by the secondorder sufficient optimality condition (SOSC) without any constraint qualification assumptions. In this paper, we state precise relationships between the upper Lipschitzian property of solutions of KKT systems, error bounds for KKT systems, the notion of critical Lagrange multipliers (a subclass of multipliers that violate SOSC in a very special way), the secondorder necessary condition for optimality, and solvability of sSQP subproblems. Moreover,
A superlinearly convergent implicit smooth SQP algorithm for mathematical programs with nonlinear complementarity constraints
 Computational Optimization and Applications
"... Abstract. This paper discusses a special class of mathematical programs with nonlinear complementarity constraints, its goal is to present a globally and superlinearly convergent algorithm for the discussed problems. We first reformulate the complementarity constraints as a standard nonlinear equal ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
(Show Context)
Abstract. This paper discusses a special class of mathematical programs with nonlinear complementarity constraints, its goal is to present a globally and superlinearly convergent algorithm for the discussed problems. We first reformulate the complementarity constraints as a standard nonlinear equality and inequality constraints by making use of a class of generalized smoothing complementarity functions, then present a new SQP algorithm for the discussed problems. At each iteration, with the help of a pivoting operation, a master search direction is yielded by solving a quadratic program, and a correction search direction for avoiding the Maratos effect is generated by an explicit formula. Under suitable assumptions, without the strict complementarity on the upperlevel inequality constraints, the proposed algorithm converges globally to a Bstationary point of the problems, and its convergence rate is superlinear.