Results 1 
4 of
4
Algorithm 887: Cholmod, supernodal sparse cholesky factorization and update/downdate
 ACM Transactions on Mathematical Software
, 2008
"... CHOLMOD is a set of routines for factorizing sparse symmetric positive definite matrices of the form A or A A T, updating/downdating a sparse Cholesky factorization, solving linear systems, updating/downdating the solution to the triangular system Lx = b, and many other sparse matrix functions for b ..."
Abstract

Cited by 109 (8 self)
 Add to MetaCart
CHOLMOD is a set of routines for factorizing sparse symmetric positive definite matrices of the form A or A A T, updating/downdating a sparse Cholesky factorization, solving linear systems, updating/downdating the solution to the triangular system Lx = b, and many other sparse matrix functions for both symmetric and unsymmetric matrices. Its supernodal Cholesky factorization relies on LAPACK and the Level3 BLAS, and obtains a substantial fraction of the peak performance of the BLAS. Both real and complex matrices are supported. CHOLMOD is written in ANSI/ISO C, with both C and MATLAB TM interfaces. It appears in MATLAB 7.2 as x=A\b when A is sparse symmetric positive definite, as well as in several other sparse matrix functions.
Dynamic supernodes in sparse Cholesky update/downdate and triangular solves
 ACM Trans. Math. Software
, 2006
"... The supernodal method for sparse Cholesky factorization represents the factor L as a set of supernodes, each consisting of a contiguous set of columns of L with identical nonzero pattern. A conventional supernode is stored as a dense submatrix. While this is suitable for sparse Cholesky factorizatio ..."
Abstract

Cited by 30 (10 self)
 Add to MetaCart
(Show Context)
The supernodal method for sparse Cholesky factorization represents the factor L as a set of supernodes, each consisting of a contiguous set of columns of L with identical nonzero pattern. A conventional supernode is stored as a dense submatrix. While this is suitable for sparse Cholesky factorization where the nonzero pattern of L does not change, it is not suitable for methods that modify a sparse Cholesky factorization after a lowrank change to A (an update/downdate, A = A±WW T). Supernodes merge and split apart during an update/downdate. Dynamic supernodes are introduced, which allow a sparse Cholesky update/downdate to obtain performance competitive with conventional supernodal methods. A dynamic supernodal solver is shown to exceed the performance of the conventional (BLASbased) supernodal method for solving triangular systems. These methods are incorporated into CHOLMOD, a sparse Cholesky factorization and update/downdate package, which forms the basis of x=A\b in MATLAB when A is sparse and symmetric positive definite. 1
FULL LENGTH PAPER
"... A sparse proximal implementation of the LP dual active set algorithm ..."
(Show Context)