Results 1 
5 of
5
On Nonreflecting Boundary Conditions
 J. COMPUT. PHYS
, 1995
"... Improvements are made in nonreflecting boundary conditions at artificial boundaries for use with the Helmholtz equation. First, it is shown how to remove the difficulties that arise when the exact DtN (DirichlettoNeumann) condition is truncated for use in computation, by modifying the truncated ..."
Abstract

Cited by 219 (4 self)
 Add to MetaCart
Improvements are made in nonreflecting boundary conditions at artificial boundaries for use with the Helmholtz equation. First, it is shown how to remove the difficulties that arise when the exact DtN (DirichlettoNeumann) condition is truncated for use in computation, by modifying the truncated condition. Second, the exact DtN boundary condition is derived for elliptic and spheroidal coordinates. Third, approximate local boundary conditions are derived for these coordinates. Fourth, the truncated DtN condition in elliptic and spheroidal coordinates is modified to remove difficulties. Fifth, a sequence of new and more accurate local boundary conditions is derived for polar coordinates in two dimensions. Numerical results are presented to demonstrate the usefulness of these improvements.
Numerical Solution Of Problems On Unbounded Domains. A Review
 A review, Appl. Numer. Math
, 1998
"... While numerically solving a problem initially formulated on an unbounded domain, one typically truncates this domain, which necessitates setting the artificial boundary conditions (ABC's) at the newly formed external boundary. The issue of setting the ABC's appears most significant in many ..."
Abstract

Cited by 126 (19 self)
 Add to MetaCart
While numerically solving a problem initially formulated on an unbounded domain, one typically truncates this domain, which necessitates setting the artificial boundary conditions (ABC's) at the newly formed external boundary. The issue of setting the ABC's appears most significant in many areas of scientific computing, for example, in problems originating from acoustics, electrodynamics, solid mechanics, and fluid dynamics. In particular, in computational fluid dynamics (where external problems represent a wide class of important formulations) the proper treatment of external boundaries may have a profound impact on the overall quality and performance of numerical algorithms and interpretation of the results. Most of the currently used techniques for setting the ABC's can basically be classified into two groups. The methods from the first group (global ABC's) usually provide high accuracy and robustness of the numerical procedure but often appear to be fairly cumbersome and (computa...
Radiation Boundary Condition for the Numerical Simulation of Waves
 Acta Numerica
, 1999
"... We consider the efficient evaluation of accurate radiation boundary conditions for time domain simulations of wave propagation on unbounded spatial domains. This issue has long been a primary stumbling block for the reliable solution of this important class of problems. In recent years, a number of ..."
Abstract

Cited by 91 (3 self)
 Add to MetaCart
We consider the efficient evaluation of accurate radiation boundary conditions for time domain simulations of wave propagation on unbounded spatial domains. This issue has long been a primary stumbling block for the reliable solution of this important class of problems. In recent years, a number of new approaches have been introduced which have radically changed the situation. These include methods for the fast evaluation of the exact nonlocal operators in special geometries, novel sponge layers with reflectionless interfaces, and improved techniques for applying sequences of approximate conditions to higher order. For the primary isotropic, constant coefficient equations of wave theory, these new developments provide an essentially complete solution of the numerical radiation condition problem. In this paper the theory of exact boundary conditions for constant coefficient timedependent problems is developed in detail, with many examples from physical applications. The theory is used to motivate various approximations and to establish error estimates. Complexity estimates are also derived to
Artificial Boundary Conditions Based On The Difference Potentials Method
 IN PROCEEDINGS OF THE SIXTH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL FLUID DYNAMICS, IV
, 1996
"... While numerically solving a problem initially formulated on an unbounded domain, one typically truncates this domain, which necessitates setting the artificial boundary conditions (ABC's) at the newly formed external boundary. The issue of setting the ABC's appears to be most significant i ..."
Abstract

Cited by 6 (3 self)
 Add to MetaCart
(Show Context)
While numerically solving a problem initially formulated on an unbounded domain, one typically truncates this domain, which necessitates setting the artificial boundary conditions (ABC's) at the newly formed external boundary. The issue of setting the ABC's appears to be most significant in many areas of scientific computing, for example, in problems originating from acoustics, electrodynamics, solid mechanics, and fluid dynamics. In particular, in computational fluid dynamics (where external problems present a wide class of practically important formulations) the proper treatment of external boundaries may have a profound impact on the overall quality and performance of numerical algorithms. Most of the currently used techniques for setting the ABC's can basically be classified into two groups. The methods from the first group (global ABC's) usually provide high accuracy and robustness of the numerical procedure but often appear to be fairly cumbersome and (computationally) expensiv...
An analysis of higher order boundary conditions for the wave equation
, 2005
"... Thanks to the use of the Cagniard–De Hoop method, we derive an analytic solution in the time domain for the halfspace problem associated with the wave equation with Engquist– Majda higher order boundary conditions. This permits us to derive new convergence results when the order of the boundary con ..."
Abstract

Cited by 4 (1 self)
 Add to MetaCart
(Show Context)
Thanks to the use of the Cagniard–De Hoop method, we derive an analytic solution in the time domain for the halfspace problem associated with the wave equation with Engquist– Majda higher order boundary conditions. This permits us to derive new convergence results when the order of the boundary condition tends to +∞, as well as error estimates. The theory is illustrated by numerical results.