Results 1  10
of
1,226
Maximizing the Spread of Influence Through a Social Network
 In KDD
, 2003
"... Models for the processes by which ideas and influence propagate through a social network have been studied in a number of domains, including the diffusion of medical and technological innovations, the sudden and widespread adoption of various strategies in gametheoretic settings, and the effects of ..."
Abstract

Cited by 963 (6 self)
 Add to MetaCart
(Show Context)
Models for the processes by which ideas and influence propagate through a social network have been studied in a number of domains, including the diffusion of medical and technological innovations, the sudden and widespread adoption of various strategies in gametheoretic settings, and the effects of “word of mouth ” in the promotion of new products. Recently, motivated by the design of viral marketing strategies, Domingos and Richardson posed a fundamental algorithmic problem for such social network processes: if we can try to convince a subset of individuals to adopt a new product or innovation, and the goal is to trigger a large cascade of further adoptions, which set of individuals should we target? We consider this problem in several of the most widely studied models in social network analysis. The optimization problem of selecting the most influential nodes is NPhard here, and we provide the first provable approximation guarantees for efficient algorithms. Using an analysis framework based on submodular functions, we show that a natural greedy strategy obtains a solution that is provably within 63 % of optimal for several classes of models; our framework suggests a general approach for reasoning about the performance guarantees of algorithms for these types of influence problems in social networks. We also provide computational experiments on large collaboration networks, showing that in addition to their provable guarantees, our approximation algorithms significantly outperform nodeselection heuristics based on the wellstudied notions of degree centrality and distance centrality from the field of social networks.
Exact Sampling with Coupled Markov Chains and Applications to Statistical Mechanics
, 1996
"... For many applications it is useful to sample from a finite set of objects in accordance with some particular distribution. One approach is to run an ergodic (i.e., irreducible aperiodic) Markov chain whose stationary distribution is the desired distribution on this set; after the Markov chain has ..."
Abstract

Cited by 548 (13 self)
 Add to MetaCart
For many applications it is useful to sample from a finite set of objects in accordance with some particular distribution. One approach is to run an ergodic (i.e., irreducible aperiodic) Markov chain whose stationary distribution is the desired distribution on this set; after the Markov chain has run for M steps, with M sufficiently large, the distribution governing the state of the chain approximates the desired distribution. Unfortunately it can be difficult to determine how large M needs to be. We describe a simple variant of this method that determines on its own when to stop, and that outputs samples in exact accordance with the desired distribution. The method uses couplings, which have also played a role in other sampling schemes; however, rather than running the coupled chains from the present into the future, one runs from a distant point in the past up until the present, where the distance into the past that one needs to go is determined during the running of the al...
Traffic and related selfdriven manyparticle systems
, 2000
"... Since the subject of traffic dynamics has captured the interest of physicists, many surprising effects have been revealed and explained. Some of the questions now understood are the following: Why are vehicles sometimes stopped by ‘‘phantom traffic jams’ ’ even though drivers all like to drive fast? ..."
Abstract

Cited by 336 (38 self)
 Add to MetaCart
Since the subject of traffic dynamics has captured the interest of physicists, many surprising effects have been revealed and explained. Some of the questions now understood are the following: Why are vehicles sometimes stopped by ‘‘phantom traffic jams’ ’ even though drivers all like to drive fast? What are the mechanisms behind stopandgo traffic? Why are there several different kinds of congestion, and how are they related? Why do most traffic jams occur considerably before the road capacity is reached? Can a temporary reduction in the volume of traffic cause a lasting traffic jam? Under which conditions can speed limits speed up traffic? Why do pedestrians moving in opposite directions normally organize into lanes, while similar systems ‘‘freeze by heating’’? All of these questions have been answered by applying and extending methods from statistical physics and nonlinear dynamics to selfdriven manyparticle systems. This article considers the empirical data and then reviews the main approaches to modeling pedestrian and vehicle traffic. These include microscopic (particlebased), mesoscopic (gaskinetic), and macroscopic (fluiddynamic) models. Attention is also paid to the formulation of a micromacro link, to aspects of universality, and to other unifying concepts, such as a general modeling framework for selfdriven manyparticle systems, including spin systems. While the primary focus is upon vehicle and pedestrian traffic, applications to biological or socioeconomic systems such as bacterial colonies, flocks of birds, panics, and stock market dynamics are touched upon as well.
Social Interactions, Local Spillovers and Unemployment
 REVIEW OF ECONOMIC STUDIES
, 2001
"... I analyse a model that explicitly incorporates local interactions and allows agents to exchange information about job openings within their social networks. Agents are more likely to be employed if their social contacts are also employed. The model generates a stationary distribution of unemployment ..."
Abstract

Cited by 246 (9 self)
 Add to MetaCart
I analyse a model that explicitly incorporates local interactions and allows agents to exchange information about job openings within their social networks. Agents are more likely to be employed if their social contacts are also employed. The model generates a stationary distribution of unemployment that exhibits positive spatial correlations. I estimate the model via an indirect inference procedure, using Census Tract data for Chicago. I find a significantly positive amount of social interactions across neighbouring tracts. The local spillovers are stronger for areas with less educated workers and higher fractions of minorities. Furthermore, they are shaped by ethnic dividing lines and neighbourhood boundaries.
Longest increasing subsequences: from patience sorting to the BaikDeiftJohansson theorem
 BULL. AMER. MATH. SOC. (N.S
, 1999
"... We describe a simple oneperson card game, patience sorting. Its analysis leads to a broad circle of ideas linking Young tableaux with the longest increasing subsequence of a random permutation via the Schensted correspondence. A recent highlight of this area is the work of BaikDeiftJohansson wh ..."
Abstract

Cited by 183 (2 self)
 Add to MetaCart
(Show Context)
We describe a simple oneperson card game, patience sorting. Its analysis leads to a broad circle of ideas linking Young tableaux with the longest increasing subsequence of a random permutation via the Schensted correspondence. A recent highlight of this area is the work of BaikDeiftJohansson which yields limiting probability laws via hard analysis of Toeplitz determinants.
Logarithmic Sobolev inequality and finite markov chains
, 1996
"... This is an expository paper on the use of logarithmic Sobolev inequalities for bounding rates of convergence of Markov chains on finite state spaces to their stationary distributions. Logarithmic Sobolev inequalities complement eigenvalue techniques and work for nonreversible chains in continuous ti ..."
Abstract

Cited by 179 (15 self)
 Add to MetaCart
This is an expository paper on the use of logarithmic Sobolev inequalities for bounding rates of convergence of Markov chains on finite state spaces to their stationary distributions. Logarithmic Sobolev inequalities complement eigenvalue techniques and work for nonreversible chains in continuous time. Some aspects of the theory simplify considerably with finite state spaces and we are able to give a selfcontained development. Examples of applications include the study of a Metropolis chain for the binomial distribution, sharp results for natural chains on the box of side n in d dimensions and improved rates for exclusion processes. We also show that for most rregular graphs the logSobolev constant is of smaller order than the spectral gap. The logSobolev constant of the asymmetric twopoint space is computed exactly as well as the logSobolev constant of the complete graph on n points.
Statistical physics of vehicular traffic and some related systems
 PHYSICS REPORT 329
, 2000
"... ..."
Evolutionary games on graphs
, 2007
"... Game theory is one of the key paradigms behind many scientific disciplines from biology to behavioral sciences to economics. In its evolutionary form and especially when the interacting agents are linked in a specific social network the underlying solution concepts and methods are very similar to ..."
Abstract

Cited by 143 (0 self)
 Add to MetaCart
Game theory is one of the key paradigms behind many scientific disciplines from biology to behavioral sciences to economics. In its evolutionary form and especially when the interacting agents are linked in a specific social network the underlying solution concepts and methods are very similar to those applied in nonequilibrium statistical physics. This review gives a tutorialtype overview of the field for physicists. The first four sections introduce the necessary background in classical and evolutionary game theory from the basic definitions to the most important results. The fifth section surveys the topological complications implied by nonmeanfieldtype social network structures in general. The next three sections discuss in detail the dynamic behavior of three prominent classes of models: the Prisoner’s Dilemma, the Rock–Scissors–Paper game, and Competing Associations. The major theme of the review is in what sense and how the graph structure of interactions can modify and enrich the picture of long term behavioral patterns emerging in evolutionary games.
Nonequilibrium critical phenomena and phase transitions into absorbing states
 ADVANCES IN PHYSICS
, 2000
"... ..."