Results 1  10
of
747
Toward Principles for the Design of Ontologies Used for Knowledge Sharing
 IN FORMAL ONTOLOGY IN CONCEPTUAL ANALYSIS AND KNOWLEDGE REPRESENTATION, KLUWER ACADEMIC PUBLISHERS, IN PRESS. SUBSTANTIAL REVISION OF PAPER PRESENTED AT THE INTERNATIONAL WORKSHOP ON FORMAL ONTOLOGY
, 1993
"... Recent work in Artificial Intelligence is exploring the use of formal ontologies as a way of specifying contentspecific agreements for the sharing and reuse of knowledge among software entities. We take an engineering perspective on the development of such ontologies. Formal ontologies are viewed a ..."
Abstract

Cited by 2003 (3 self)
 Add to MetaCart
(Show Context)
Recent work in Artificial Intelligence is exploring the use of formal ontologies as a way of specifying contentspecific agreements for the sharing and reuse of knowledge among software entities. We take an engineering perspective on the development of such ontologies. Formal ontologies are viewed as designed artifacts, formulated for specific purposes and evaluated against objective design criteria. We describe the role of ontologies in supporting knowledge sharing activities, and then present a set of criteria to guide the development of ontologies for these purposes. We show how these criteria are applied in case studies from the design of ontologies for engineering mathematics and bibliographic data. Selected design decisions are discussed, and alternative representation choices and evaluated against the design criteria.
Temporal and modal logic
 HANDBOOK OF THEORETICAL COMPUTER SCIENCE
, 1995
"... We give a comprehensive and unifying survey of the theoretical aspects of Temporal and modal logic. ..."
Abstract

Cited by 1310 (17 self)
 Add to MetaCart
We give a comprehensive and unifying survey of the theoretical aspects of Temporal and modal logic.
Logical foundations of objectoriented and framebased languages
 JOURNAL OF THE ACM
, 1995
"... We propose a novel formalism, called Frame Logic (abbr., Flogic), that accounts in a clean and declarative fashion for most of the structural aspects of objectoriented and framebased languages. These features include object identity, complex objects, inheritance, polymorphic types, query methods, ..."
Abstract

Cited by 876 (65 self)
 Add to MetaCart
(Show Context)
We propose a novel formalism, called Frame Logic (abbr., Flogic), that accounts in a clean and declarative fashion for most of the structural aspects of objectoriented and framebased languages. These features include object identity, complex objects, inheritance, polymorphic types, query methods, encapsulation, and others. In a sense, Flogic stands in the same relationship to the objectoriented paradigm as classical predicate calculus stands to relational programming. Flogic has a modeltheoretic semantics and a sound and complete resolutionbased proof theory. A small number of fundamental concepts that come from objectoriented programming have direct representation in Flogic; other, secondary aspects of this paradigm are easily modeled as well. The paper also discusses semantic issues pertaining to programming with a deductive objectoriented language based on a subset of Flogic.
Automating the Design of Graphical Presentations of Relational Information
 ACM Transactions on Graphics
, 1986
"... The goal of the research described in this paper is to develop an applicationindependent presentation tool that automatically designs effective graphical presentations (such as bar charts, scatter plots, and connected graphs) of relational information. Two problems are raised by this goal: The codi ..."
Abstract

Cited by 559 (9 self)
 Add to MetaCart
(Show Context)
The goal of the research described in this paper is to develop an applicationindependent presentation tool that automatically designs effective graphical presentations (such as bar charts, scatter plots, and connected graphs) of relational information. Two problems are raised by this goal: The codification of graphic design criteria in a form that can be used by the presentation tool, and the generation of a wide variety of designs so that the presentation tool can accommodate a wide variety of information. The approach described in this paper is based on the view that graphical presentations are sentences of graphical languages. The graphic design issues are codified as expressiveness and effectiveness criteria for graphical languages. Expressiveness criteria determine whether a graphical language can express the desired information. Effectiveness criteria determine whether a graphical language exploits the capabilities of the output medium and the human visual system. A wide variety of designs can be systematically generated by using a composition algebra that composes a small set of primitive graphical languages. Artificial intelligence techniques are used to implement a prototype presentation tool called APT (A Presentation Tool), which is based on the composition algebra and the graphic design criteria.
Ontology Mapping: The State of the Art
, 2003
"... Ontology mapping is seen as a solution provider in today's landscape of ontology research. As the number of ontologies that are made publicly available and accessible on the Web increases steadily, so does the need for applications to use them. A single ontology is no longer enough to support t ..."
Abstract

Cited by 446 (10 self)
 Add to MetaCart
(Show Context)
Ontology mapping is seen as a solution provider in today's landscape of ontology research. As the number of ontologies that are made publicly available and accessible on the Web increases steadily, so does the need for applications to use them. A single ontology is no longer enough to support the tasks envisaged by a distributed environment like the Semantic Web. Multiple ontologies need to be accessed from several applications. Mapping could provide a common layer from which several ontologies could be accessed and hence could exchange information in semantically sound manners. Developing such mappings has been the focus of a variety of works originating from diverse communities over a number of years. In this article we comprehensively review and present these works. We also provide insights on the pragmatics of ontology mapping and elaborate on a theoretical approach for defining ontology mapping.
Relational Queries Computable in Polynomial Time
 Information and Control
, 1986
"... We characterize the polynomial time computable queries as those expressible in relational calculus plus a least fixed point operator and a total ordering on the universe. We also show that even without the ordering one application of fixed point suffices to express any query expressible with several ..."
Abstract

Cited by 318 (17 self)
 Add to MetaCart
We characterize the polynomial time computable queries as those expressible in relational calculus plus a least fixed point operator and a total ordering on the universe. We also show that even without the ordering one application of fixed point suffices to express any query expressible with several alternations of fixed point and negation. This proves that the fixed point query hierarchy suggested by Chandra and Harel collapses at the first fixed point level. It is also a general result showing that in finite model theory one application of fixed point suffices. Introduction and Summary Query languages for relational databases have received considerable attention. In 1972 Codd showed that two natural languages for queries  one algebraic and the other a version of first order predicate calculus  have identical powers of expressibility, [Cod72]. Query languages which are as expressive as Codd's Relational Calculus are sometimes called complete. This term is misleading however becau...
An Analysis of FirstOrder Logics of Probability
 Artificial Intelligence
, 1990
"... : We consider two approaches to giving semantics to firstorder logics of probability. The first approach puts a probability on the domain, and is appropriate for giving semantics to formulas involving statistical information such as "The probability that a randomly chosen bird flies is greater ..."
Abstract

Cited by 314 (17 self)
 Add to MetaCart
(Show Context)
: We consider two approaches to giving semantics to firstorder logics of probability. The first approach puts a probability on the domain, and is appropriate for giving semantics to formulas involving statistical information such as "The probability that a randomly chosen bird flies is greater than .9." The second approach puts a probability on possible worlds, and is appropriate for giving semantics to formulas describing degrees of belief, such as "The probability that Tweety (a particular bird) flies is greater than .9." We show that the two approaches can be easily combined, allowing us to reason in a straightforward way about statistical information and degrees of belief. We then consider axiomatizing these logics. In general, it can be shown that no complete axiomatization is possible. We provide axiom systems that are sound and complete in cases where a complete axiomatization is possible, showing that they do allow us to capture a great deal of interesting reasoning about prob...
Complexity of Answering Queries Using Materialized Views. In
 PODS,
, 1998
"... Abstract We study the complexity of the problem of answering queries using materialized views. This problem has attracted a lot of attention recently because of its relevance in data integration. Previous work considered only conjunctive view definitions. We examine the consequences of allowing mor ..."
Abstract

Cited by 308 (5 self)
 Add to MetaCart
Abstract We study the complexity of the problem of answering queries using materialized views. This problem has attracted a lot of attention recently because of its relevance in data integration. Previous work considered only conjunctive view definitions. We examine the consequences of allowing more expressive view definition languages. The languages we consider for view definitions and user queries are: conjunctive queries with inequality, positive queries, datalog, and firstorder logic. We show that the complexity of the problem depends on whether views are assumed to store all the tuples that satisfy the view definition, or only a subset of it. Finally, we apply the results to the view consistency and view selfmaintainability problems which arise in data warehousing. 2
A framework for argumentationbased negotiation
 Proceedings of the 4th International Workshop on Agent Theories, Architectures, and Languages (ATAL97), volume 1365 of LNAI
, 1998
"... Abstract. Many autonomous agents operate in domains in which the cooperation of their fellow agents cannot be guaranteed. In such domains negotiation is essential to persuade others of the value of cooperation. This paper describes a general framework for negotiation in which agents exchange propos ..."
Abstract

Cited by 289 (57 self)
 Add to MetaCart
(Show Context)
Abstract. Many autonomous agents operate in domains in which the cooperation of their fellow agents cannot be guaranteed. In such domains negotiation is essential to persuade others of the value of cooperation. This paper describes a general framework for negotiation in which agents exchange proposals backed by arguments which summarise the reasons why the proposals should be accepted. The argumentation is persuasive because the exchanges are able to alter the mental state of the agents involved. The framework is inspired by our work in the domain of business process management and is explained using examples from that domain. Keywords: Automated negotiation, Argumentation, Persuasion. 1
The logic of constraint satisfaction
, 1992
"... The constraint satisfaction problem (CSP) formalization has been a productive tool within Artificial Intelligence and related areas. The finite CSP (FCSP) framework is presented here as a restricted logical calculus within a space of logical representation and reasoning systems. FCSP is formulated i ..."
Abstract

Cited by 265 (5 self)
 Add to MetaCart
The constraint satisfaction problem (CSP) formalization has been a productive tool within Artificial Intelligence and related areas. The finite CSP (FCSP) framework is presented here as a restricted logical calculus within a space of logical representation and reasoning systems. FCSP is formulated in a variety of logical settings: theorem proving in first order predicate calculus, propositional theorem proving (and hence SAT), the Prolog and Datalog approaches, constraint network algorithms, a logical interpreter for networks of constraints, the constraint logic programming (CLP) paradigm and propositional model finding (and hence SAT, again). Several standard, and some notsostandard, logical methods can therefore be used to solve these problems. By doing this we obtain a specification of the semantics of the common approaches. This synthetic treatment also allows algorithms and results from these disparate areas to be imported, and specialized, to FCSP; the special properties of FCSP are exploited to achieve, for example, completeness and to improve efficiency. It also allows export to the related areas. By casting CSP both as a generalization of FCSP and as a specialization of CLP it is observed that some, but not all, FCSP techniques lift to CSP and thereby to CLP. Various new connections are uncovered, in