Results 1 - 10
of
527
Light Field Rendering
, 1996
"... A number of techniques have been proposed for flying through scenes by redisplaying previously rendered or digitized views. Techniques have also been proposed for interpolating between views by warping input images, using depth information or correspondences between multiple images. In this paper, w ..."
Abstract
-
Cited by 1337 (22 self)
- Add to MetaCart
A number of techniques have been proposed for flying through scenes by redisplaying previously rendered or digitized views. Techniques have also been proposed for interpolating between views by warping input images, using depth information or correspondences between multiple images. In this paper, we describe a simple and robust method for generating new views from arbitrary camera positions without depth information or feature matching, simply by combining and resampling the available images. The key to this technique lies in interpreting the input images as 2D slices of a 4D function - the light field. This function completely characterizes the flow of light through unobstructed space in a static scene with fixed illumination. We describe a
The Lumigraph
- IN PROCEEDINGS OF SIGGRAPH 96
, 1996
"... This paper discusses a new method for capturing the complete appearanceof both synthetic and real world objects and scenes, representing this information, and then using this representation to render images of the object from new camera positions. Unlike the shape capture process traditionally used ..."
Abstract
-
Cited by 1025 (39 self)
- Add to MetaCart
(Show Context)
This paper discusses a new method for capturing the complete appearanceof both synthetic and real world objects and scenes, representing this information, and then using this representation to render images of the object from new camera positions. Unlike the shape capture process traditionally used in computer vision and the rendering process traditionally used in computer graphics, our approach does not rely on geometric representations. Instead we sample and reconstruct a 4D function, which we call a Lumigraph. The Lumigraph is a subset of the complete plenoptic function that describes the flow of light at all positions in all directions. With the Lumigraph, new images of the object can be generated very quickly, independent of the geometric or illumination complexity of the scene or object. The paper discusses a complete working system including the capture of samples, the construction of the Lumigraph, and the subsequent rendering of images from this new representation.
Recovering High Dynamic Range Radiance Maps from Photographs
"... We present a method of recovering high dynamic range radiance maps from photographs taken with conventional imaging equipment. In our method, multiple photographs of the scene are taken with different amounts of exposure. Our algorithm uses these differently exposed photographs to recover the respon ..."
Abstract
-
Cited by 859 (15 self)
- Add to MetaCart
(Show Context)
We present a method of recovering high dynamic range radiance maps from photographs taken with conventional imaging equipment. In our method, multiple photographs of the scene are taken with different amounts of exposure. Our algorithm uses these differently exposed photographs to recover the response function of the imaging process, up to factor of scale, using the assumption of reciprocity. With the known response function, the algorithm can fuse the multiple photographs into a single, high dynamic range radiance map whose pixel values are proportional to the true radiance values in the scene. We demonstrate our method on images acquired with both photochemical and digital imaging processes. We discuss how this work is applicable in many areas of computer graphics involving digitized photographs, including image-based modeling, image compositing, and image processing. Lastly, we demonstrate a few applications of having high dynamic range radiance maps, such as synthesizing realistic motion blur and simulating the response of the human visual system.
Creating Full View Panoramic Image Mosaics and Environment Maps
, 1997
"... This paper presents a novel approach to creating full view panoramic mosaics from image sequences. Unlike current panoramic stitching methods, which usually require pure horizontal camera panning, our system does not require any controlled motions or constraints on how the images are taken (as long ..."
Abstract
-
Cited by 340 (29 self)
- Add to MetaCart
This paper presents a novel approach to creating full view panoramic mosaics from image sequences. Unlike current panoramic stitching methods, which usually require pure horizontal camera panning, our system does not require any controlled motions or constraints on how the images are taken (as long as there is no strong motion parallax). For example, images taken from a hand-held digital camera can be stitched seamlessly into panoramic mosaics. Because we represent our image mosaics using a set of transforms, there are no singularity problems such as those existing at the top and bottom of cylindrical or spherical maps. Our algorithm is fast and robust because it directly recovers 3D rotations instead of general 8 parameter planar perspective transforms. Methods to recover camera focal length are also presented. We also present an algorithm for efficiently extracting environment maps from our image mosaics. By mapping the mosaic onto an artibrary texture-mapped polyhedron surrounding t...
Image-based visual hulls
- IN PROCEEDINGS OF ACM SIGGRAPH 2000
, 2000
"... In this paper, we describe an efficient image-based approach to computing and shading visual hulls from silhouette image data. Our algorithm takes advantage of epipolar geometry and incremental computation to achieve a constant rendering cost per rendered pixel. It does not suffer from the computati ..."
Abstract
-
Cited by 339 (15 self)
- Add to MetaCart
(Show Context)
In this paper, we describe an efficient image-based approach to computing and shading visual hulls from silhouette image data. Our algorithm takes advantage of epipolar geometry and incremental computation to achieve a constant rendering cost per rendered pixel. It does not suffer from the computation complexity, limited resolution, or quantization artifacts of previous volumetric approaches. We demonstrate the use of this algorithm in a real-time virtualized reality application running off a small number of video streams.
View morphing
- In Computer Graphics (SIGGRAPH’96
, 1996
"... Image morphing techniques can generate compelling 2D transitions between images. However, differences in object pose or viewpoint often cause unnatural distortions in image morphs that are difficult to correct manually. Using basic principles of projective geometry, this paper introduces a simple ex ..."
Abstract
-
Cited by 277 (20 self)
- Add to MetaCart
Image morphing techniques can generate compelling 2D transitions between images. However, differences in object pose or viewpoint often cause unnatural distortions in image morphs that are difficult to correct manually. Using basic principles of projective geometry, this paper introduces a simple extension to image morphing that correctly handles 3D projective camera and scene transformations. The technique, called view morphing, works by prewarping two images prior to computing a morph and then postwarping the interpolated images. Because no knowledge of 3D shape is required, the technique may be applied to photographs and drawings, as well as rendered scenes. The ability to synthesize changes both in viewpoint and image structure affords a wide variety of interesting 3D effects via simple image transformations.
Video Textures
, 2000
"... This paper introduces a new type of medium, called a video texture, which has qualities somewhere between those of a photograph and a video. A video texture provides a continuous infinitely varying stream of images. While the individual frames of a video texture may be repeated from time to time, th ..."
Abstract
-
Cited by 276 (8 self)
- Add to MetaCart
This paper introduces a new type of medium, called a video texture, which has qualities somewhere between those of a photograph and a video. A video texture provides a continuous infinitely varying stream of images. While the individual frames of a video texture may be repeated from time to time, the video sequence as a whole is never repeated exactly. Video textures can be used in place of digital photos to infuse a static image with dynamic qualities and explicit action. We present techniques for analyzing a video clip to extract its structure, and for synthesizing a new, similar looking video of arbitrary length. We combine video textures with view morphing techniques to obtain 3D video textures. We also introduce videobased animation, in which the synthesis of video textures can be guided by a user through high-level interactive controls. Applications of video textures and their extensions include the display of dynamic scenes on web pages, the creation of dynamic backdrops for sp...
Inverse Global Illumination: Recovering Reflectance Models of Real Scenes from Photographs
, 1999
"... In this paper we present a method for recovering the reflectance properties of all surfaces in a real scene from a sparse set of photographs, taking into account both direct and indirect illumination. The result is a lighting-independent model of the scene's geometry and reflectance properties, ..."
Abstract
-
Cited by 246 (12 self)
- Add to MetaCart
(Show Context)
In this paper we present a method for recovering the reflectance properties of all surfaces in a real scene from a sparse set of photographs, taking into account both direct and indirect illumination. The result is a lighting-independent model of the scene's geometry and reflectance properties, which can be rendered with arbitrary modifications to structure and lighting via traditional rendering methods. Our technique models reflectance with a lowparameter reflectance model, and allows diffuse albedo to vary arbitrarily over surfaces while assuming that non-diffuse characteristics remain constant across particular regions. The method's input is a geometric model of the scene and a set of calibrated high dynamic range photographs taken with known direct illumination. The algorithm hierarchically partitions the scene into a polygonal mesh, and uses image-based rendering to construct estimates of both the radiance and irradiance of each patch from the photographic data. The algorithm computes the expected location of specular highlights, and then analyzes the highlight areas in the images by running a novel iterative optimization procedure to recover the diffuse and specular reflectance parameters for each region. Lastly, these parameters are used in constructing high-resolution diffuse albedo maps for each surface.