Results 1 
2 of
2
Structured programming with go to statements
 Computing Surveys
, 1974
"... A consideration of several different examples sheds new light on the problem of ereating reliable, wellstructured programs that behave efficiently. This study focuses largely on two issues: (a) improved syntax for iterations and error exits, making it possible to write a larger class of programs c ..."
Abstract

Cited by 82 (3 self)
 Add to MetaCart
A consideration of several different examples sheds new light on the problem of ereating reliable, wellstructured programs that behave efficiently. This study focuses largely on two issues: (a) improved syntax for iterations and error exits, making it possible to write a larger class of programs clearly and efficiently without go to state
Phase Change of Limit Laws in the Quicksort Recurrence Under Varying Toll Functions
, 2001
"... We characterize all limit laws of the quicksort type random variables defined recursively by Xn = X In + X # n1In + Tn when the "toll function" Tn varies and satisfies general conditions, where (Xn ), (X # n ), (I n , Tn ) are independent, Xn . . . , n 1}. When the "to ..."
Abstract

Cited by 54 (17 self)
 Add to MetaCart
We characterize all limit laws of the quicksort type random variables defined recursively by Xn = X In + X # n1In + Tn when the "toll function" Tn varies and satisfies general conditions, where (Xn ), (X # n ), (I n , Tn ) are independent, Xn . . . , n 1}. When the "toll function" Tn (cost needed to partition the original problem into smaller subproblems) is small (roughly lim sup n## log E(Tn )/ log n 1/2), Xn is asymptotically normally distributed; nonnormal limit laws emerge when Tn becomes larger. We give many new examples ranging from the number of exchanges in quicksort to sorting on broadcast communication model, from an insitu permutation algorithm to tree traversal algorithms, etc.