Results 1  10
of
11
Semiparametrically efficient rankbased inference for shape I: Optimal rankbased tests for sphericity
 Ann. Statist
, 2006
"... A class of Restimators based on the concepts of multivariate signed ranks and the optimal rankbased tests developed in Hallin and Paindaveine [Ann. Statist. 34 (2006)] is proposed for the estimation of the shape matrix of an elliptical distribution. These Restimators are rootn consistent under a ..."
Abstract

Cited by 48 (32 self)
 Add to MetaCart
(Show Context)
A class of Restimators based on the concepts of multivariate signed ranks and the optimal rankbased tests developed in Hallin and Paindaveine [Ann. Statist. 34 (2006)] is proposed for the estimation of the shape matrix of an elliptical distribution. These Restimators are rootn consistent under any radial density g, without any moment assumptions, and semiparametrically efficient at some prespecified density f. When based on normal scores, they are uniformly more efficient than the traditional normaltheory estimator based on empirical covariance matrices (the asymptotic normality of which, moreover, requires finite moments of order four), irrespective of the actual underlying elliptical density. They rely on an original rankbased version of Le Cam’s onestep methodology which avoids the unpleasant nonparametric estimation of crossinformation quantities that is generally required in the context of Restimation. Although they are not strictly affineequivariant, they are shown to be equivariant in a weak asymptotic sense. Simulations confirm their feasibility and excellent finitesample performances. 1. Introduction. 1.1. Rankbased inference for elliptical families. An elliptical density over Rk is determined by a location center θ ∈ Rk, a scale parameter σ ∈ R + 0, a realvalued positive definite symmetric k × k matrix V = (Vij) with V11 = 1,
OPTIMAL RANKBASED TESTING FOR PRINCIPAL COMPONENTS
"... This paper provides parametric and rankbased optimal tests for eigenvectors and eigenvalues of covariance or scatter matrices in elliptical families. The parametric tests extend the Gaussian likelihood ratio tests of Anderson (1963) and their pseudoGaussian robustifications by Tyler (1981, 1983) a ..."
Abstract

Cited by 13 (11 self)
 Add to MetaCart
This paper provides parametric and rankbased optimal tests for eigenvectors and eigenvalues of covariance or scatter matrices in elliptical families. The parametric tests extend the Gaussian likelihood ratio tests of Anderson (1963) and their pseudoGaussian robustifications by Tyler (1981, 1983) and Davis (1977), with which their Gaussian versions are shown to coincide, asymptotically, under Gaussian or finite fourthorder moment assumptions, respectively. Such assumptions however restrict the scope to covariancebased principal component analysis. The rankbased tests we are proposing remain valid without such assumptions. Hence, they address a much broader class of problems, where covariance matrices need not exist and principal components are associated with more general scatter matrices. Asymptotic relative efficiencies moreover show that those rankbased tests are quite powerful; when based on van der Waerden or normal scores, they even uniformly dominate the pseudoGaussian versions
OPTIMAL RANKBASED TESTS FOR HOMOGENEITY OF SCATTER
, 806
"... We propose a class of locally and asymptotically optimal tests, based on multivariate ranks and signs for the homogeneity of scatter matrices in m elliptical populations. Contrary to the existing parametric procedures, these tests remain valid without any moment assumptions, and thus are perfectly r ..."
Abstract

Cited by 8 (8 self)
 Add to MetaCart
(Show Context)
We propose a class of locally and asymptotically optimal tests, based on multivariate ranks and signs for the homogeneity of scatter matrices in m elliptical populations. Contrary to the existing parametric procedures, these tests remain valid without any moment assumptions, and thus are perfectly robust against heavytailed distributions (validity robustness). Nevertheless, they reach semiparametric efficiency bounds at correctly specified elliptical densities and maintain high powers under all (efficiency robustness). In particular, their normalscore version outperforms traditional Gaussian likelihood ratio tests and their pseudoGaussian robustifications under a very broad range of nonGaussian densities including, for instance, all multivariate Student and powerexponential distributions. 1. Introduction. 1.1. Homogeneity of variances and covariance matrices. The assumption of variance homogeneity is central to the theory and practice of univariate
Optimal rankbased tests for common principal components
 Bernoulli
, 2013
"... This paper provides optimal testing procedures for the msample null hypothesis of Common Principal Components (CPC) under possibly non Gaussian and heterogenous elliptical densities. We first establish, under very mild assumptions that do not require finite moments of order four, the local asympto ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
This paper provides optimal testing procedures for the msample null hypothesis of Common Principal Components (CPC) under possibly non Gaussian and heterogenous elliptical densities. We first establish, under very mild assumptions that do not require finite moments of order four, the local asymptotic normality (LAN) of the model. Based on that result, we show that the pseudoGaussian test proposed in Hallin et al. (2010a) is locally and asymptotically optimal under Gaussian densities. We also show how to compute its local powers and asymptotic relative efficiencies (AREs). A numerical evaluation of those AREs, however, reveals that, while remaining valid, this test is poorly efficient away from the Gaussian. Moreover, it still requires finite moments of order four. We therefore propose rankbased procedures that remain valid under any possibly heterogenousmtuple of elliptical densities, irrespective of any moment assumptions—in elliptical families, indeed, principal components naturally can be based on the scatter matrices characterizing the density contours, hence do not require finite variances. Those rankbased tests are not only validityrobust in the sense that they survive arbitrary elliptical population ∗Académie Royale de Belgique, CentER, Tilburg University, and ECORE. Research supported by the Sonderforschungsbereich “Statistical modelling of nonlinear dynamic processes ” (SFB 823) of the
The Annals of Statistics SEMIPARAMETRICALLY EFFICIENT RANKBASED INFERENCE FOR SHAPE I. OPTIMAL RANKBASED TESTS FOR SPHERICITY
"... We propose a class of rankbased procedures for testing that the shape matrix V of an elliptical distribution (with unspecified center of symmetry, scale, and radial density) has some fixed value V0; this includes, for V0 = Ik, the problem of testing for sphericity as an important particular case. T ..."
Abstract
 Add to MetaCart
We propose a class of rankbased procedures for testing that the shape matrix V of an elliptical distribution (with unspecified center of symmetry, scale, and radial density) has some fixed value V0; this includes, for V0 = Ik, the problem of testing for sphericity as an important particular case. The proposed tests are invariant under translations, monotone radial transformations, rotations, and reflections with respect to the estimated center of symmetry. They are valid without any moment assumption. For adequately chosen scores, they are locally asymptotically maximin (in the Le Cam sense) at given radial densities. They are strictly distributionfree when the center of symmetry is specified, and asymptotically so, when it has to be estimated. The multivariate ranks used throughout are those of the distances—in the metric associated with the null value V0 of the shape matrix—between the observations and the (estimated) center of the distribution. Local powers (against elliptical alternatives) and
The Annals of Statistics OPTIMAL RANKBASED TESTS FOR SPHERICITY
"... We propose a class of rankbased procedures for testing that the shape matrix V of an elliptical distribution (with unspecified center of symmetry, scale, and radial density) has some fixed value V0; this includes, for V0 = Ik, the problem of testing for sphericity as an important particular case. T ..."
Abstract
 Add to MetaCart
We propose a class of rankbased procedures for testing that the shape matrix V of an elliptical distribution (with unspecified center of symmetry, scale, and radial density) has some fixed value V0; this includes, for V0 = Ik, the problem of testing for sphericity as an important particular case. The proposed tests are invariant under translations, monotone radial transformations, rotations, and reflections with respect to the estimated center of symmetry. They are valid without any moment assumption. For adequately chosen scores, they are locally asymptotically maximin (in the Le Cam sense) at given radial densities. They are strictly distributionfree when the center of symmetry is specified, and asymptotically so, when it has to be estimated. The multivariate ranks used throughout are those of the distances—in the metric associated with the null value V0 of the shape matrix—between the observations and the (estimated) center of the distribution. Local powers (against elliptical alternatives) and
Principal Components. 2012. <hal00991616>
, 2014
"... HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte p ..."
Abstract
 Add to MetaCart
HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et a ̀ la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
and Common Principal Components
"... We propose rankbased estimators of principal components, both in the onesample and, under the assumption of common principal components, in the msample cases. Those estimators are obtained via a rankbased version of Le Cam’s onestep method, combined with an estimation of crossinformation quanti ..."
Abstract
 Add to MetaCart
We propose rankbased estimators of principal components, both in the onesample and, under the assumption of common principal components, in the msample cases. Those estimators are obtained via a rankbased version of Le Cam’s onestep method, combined with an estimation of crossinformation quantities. Under arbitrary elliptical distributions with, in the msample case, possibly heterogeneous radial densities, those Restimators remain rootn consistent and asymptotically normal, while achieving asymptotic efficiency under correctly specified densities. Contrary to their traditional counterparts computed from empirical covariances, they do not require any moment conditions. When based on Gaussian score functions, in the onesample case, they moreover uniformly dominate their classical