Results 1  10
of
125
Semidefinite Programming Relaxations for Semialgebraic Problems
, 2001
"... A hierarchy of convex relaxations for semialgebraic problems is introduced. For questions reducible to a finite number of polynomial equalities and inequalities, it is shown how to construct a complete family of polynomially sized semidefinite programming conditions that prove infeasibility. The mai ..."
Abstract

Cited by 361 (22 self)
 Add to MetaCart
A hierarchy of convex relaxations for semialgebraic problems is introduced. For questions reducible to a finite number of polynomial equalities and inequalities, it is shown how to construct a complete family of polynomially sized semidefinite programming conditions that prove infeasibility. The main tools employed are a semidefinite programming formulation of the sum of squares decomposition for multivariate polynomials, and some results from real algebraic geometry. The techniques provide a constructive approach for finding bounded degree solutions to the Positivstellensatz, and are illustrated with examples from diverse application fields.
Sums of Squares and Semidefinite Programming Relaxations for Polynomial Optimization Problems with Structured Sparsity
 SIAM Journal on Optimization
, 2006
"... Abstract. Unconstrained and inequality constrained sparse polynomial optimization problems (POPs) are considered. A correlative sparsity pattern graph is defined to find a certain sparse structure in the objective and constraint polynomials of a POP. Based on this graph, sets of supports for sums of ..."
Abstract

Cited by 119 (29 self)
 Add to MetaCart
(Show Context)
Abstract. Unconstrained and inequality constrained sparse polynomial optimization problems (POPs) are considered. A correlative sparsity pattern graph is defined to find a certain sparse structure in the objective and constraint polynomials of a POP. Based on this graph, sets of supports for sums of squares (SOS) polynomials that lead to efficient SOS and semidefinite programming (SDP) relaxations are obtained. Numerical results from various test problems are included to show the improved performance of the SOS and SDP relaxations. Key words.
Decoding ErrorCorrecting Codes via Linear Programming
, 2003
"... Abstract. Errorcorrecting codes are fundamental tools used to transmit digital information over unreliable channels. Their study goes back to the work of Hamming [Ham50] and Shannon [Sha48], who used them as the basis for the field of information theory. The problem of decoding the original informa ..."
Abstract

Cited by 116 (5 self)
 Add to MetaCart
Abstract. Errorcorrecting codes are fundamental tools used to transmit digital information over unreliable channels. Their study goes back to the work of Hamming [Ham50] and Shannon [Sha48], who used them as the basis for the field of information theory. The problem of decoding the original information up to the full errorcorrecting potential of the system is often very complex, especially for modern codes that approach the theoretical limits of the communication channel. In this thesis we investigate the application of linear programming (LP) relaxation to the problem of decoding an errorcorrecting code. Linear programming relaxation is a standard technique in approximation algorithms and operations research, and is central to the study of efficient algorithms to find good (albeit suboptimal) solutions to very difficult optimization problems. Our new “LP decoders ” have tight combinatorial characterizations of decoding success that can be used to analyze errorcorrecting performance. Furthermore, LP decoders have the desirable (and rare) property that whenever they output a result, it is guaranteed to be the optimal result: the most likely (ML) information sent over the
Semidefinite Representations for Finite Varieties
 MATHEMATICAL PROGRAMMING
, 2002
"... We consider the problem of minimizing a polynomial over a semialgebraic set defined by polynomial equalities and inequalities. When the polynomial equalities have a finite number of complex solutions and define a radical ideal we can reformulate this problem as a semidefinite programming prob ..."
Abstract

Cited by 52 (7 self)
 Add to MetaCart
We consider the problem of minimizing a polynomial over a semialgebraic set defined by polynomial equalities and inequalities. When the polynomial equalities have a finite number of complex solutions and define a radical ideal we can reformulate this problem as a semidefinite programming problem. This semidefinite program involves combinatorial moment matrices, which are matrices indexed by a basis of the quotient vector space R[x 1 , . . . , x n ]/I. Our arguments are elementary and extend known facts for the grid case including 0/1 and polynomial programming. They also relate to known algebraic tools for solving polynomial systems of equations with finitely many complex solutions. Semidefinite approximations can be constructed by considering truncated combinatorial moment matrices; rank conditions are given (in a grid case) that ensure that the approximation solves the original problem at optimality.
Valid inequalities for mixed integer linear programs
 MATHEMATICAL PROGRAMMING B
, 2006
"... This tutorial presents a theory of valid inequalities for mixed integer linear sets. It introduces the necessary tools from polyhedral theory and gives a geometric understanding of several classical families of valid inequalities such as liftandproject cuts, Gomory mixed integer cuts, mixed integ ..."
Abstract

Cited by 50 (0 self)
 Add to MetaCart
(Show Context)
This tutorial presents a theory of valid inequalities for mixed integer linear sets. It introduces the necessary tools from polyhedral theory and gives a geometric understanding of several classical families of valid inequalities such as liftandproject cuts, Gomory mixed integer cuts, mixed integer rounding cuts, split cuts and intersection cuts, and it reveals the relationships between these families. The tutorial also discusses computational aspects of generating the cuts and their strength.
Theta Bodies for Polynomial Ideals
, 2009
"... Inspired by a question of Lovász, we introduce a hierarchy of nested semidefinite relaxations of the convex hull of real solutions to an arbitrary polynomial ideal, called theta bodies of the ideal. For the stable set problem in a graph, the first theta body in this hierarchy is exactly Lovász’s th ..."
Abstract

Cited by 46 (8 self)
 Add to MetaCart
(Show Context)
Inspired by a question of Lovász, we introduce a hierarchy of nested semidefinite relaxations of the convex hull of real solutions to an arbitrary polynomial ideal, called theta bodies of the ideal. For the stable set problem in a graph, the first theta body in this hierarchy is exactly Lovász’s theta body of the graph. We prove that theta bodies are, up to closure, a version of Lasserre’s relaxations for real solutions to ideals, and that they can be computed explicitly using combinatorial moment matrices. Theta bodies provide a new canonical set of semidefinite relaxations for the max cut problem. For vanishing ideals of finite point sets, we give several equivalent characterizations of when the first theta body equals the convex hull of the points. We also determine the structure of the first theta body for all ideals.
Unique Games on Expanding Constraint Graphs are Easy (Extended ABstract)
 STOC'08
, 2008
"... We present an efficient algorithm to find a good solution to the Unique Games problem when the constraint graph is an expander. We introduce a new analysis of the standard SDP in this case that involves correlations among distant vertices. It also leads to a parallel repetition theorem for unique ga ..."
Abstract

Cited by 39 (11 self)
 Add to MetaCart
We present an efficient algorithm to find a good solution to the Unique Games problem when the constraint graph is an expander. We introduce a new analysis of the standard SDP in this case that involves correlations among distant vertices. It also leads to a parallel repetition theorem for unique games when the graph is an expander.
Integrality gaps for sheraliadams relaxations
 In Proceedings of the FortyFirst Annual ACM Symposium on Theory of Computing
, 2009
"... We prove strong lower bounds on integrality gaps of Sherali–Adams relaxations for MAX CUT, Vertex Cover, Sparsest Cut and other problems. Our constructions show gaps for Sherali–Adams relaxations that survive nδ rounds of lift and project. For MAX CUT and Vertex Cover, these show that even nδ rounds ..."
Abstract

Cited by 39 (2 self)
 Add to MetaCart
(Show Context)
We prove strong lower bounds on integrality gaps of Sherali–Adams relaxations for MAX CUT, Vertex Cover, Sparsest Cut and other problems. Our constructions show gaps for Sherali–Adams relaxations that survive nδ rounds of lift and project. For MAX CUT and Vertex Cover, these show that even nδ rounds of Sherali–Adams do not yield a better than 2 − ε approximation. The main combinatorial challenge in constructing these gap examples is the construction of a fractional solution that is far from an integer solution, but yet admits consistent distributions of local solutions for all small subsets of variables. Satisfying this consistency requirement is one of the major hurdles to constructing Sherali–Adams gap examples. We present a modular recipe for achieving this, building on previous work on metrics with a local–global structure. We develop a conceptually simple geometric approach to constructing Sherali–Adams gap examples via constructions of consistent local SDP solutions. This geometric approach is surprisingly versatile. We construct Sherali–Adams gap examples for Unique Games based on our construction for MAX CUT together with a parallel repetition like procedure. This in turn allows us to obtain Sherali–Adams gap examples for any problem that has a Unique Games based hardness result (with some additional conditions on the reduction from Unique Games). Using this, we construct 2 − ε gap examples for Maximum Acyclic Subgraph that rules out any family of linear constraints with support at most nδ. 1
Nonlinear integer programming
 DISC. OPTIM
, 2009
"... Research efforts of the past fifty years have led to a development of linear integer programming as a mature discipline of mathematical optimization. Such a level of maturity has not been reached when one considers nonlinear systems subject to integrality requirements for the variables. This chapt ..."
Abstract

Cited by 33 (10 self)
 Add to MetaCart
Research efforts of the past fifty years have led to a development of linear integer programming as a mature discipline of mathematical optimization. Such a level of maturity has not been reached when one considers nonlinear systems subject to integrality requirements for the variables. This chapter is dedicated to this topic. The primary goal is a study of a simple version of general nonlinear integer problems, where all constraints are still linear. Our focus is on the computational complexity of the problem, which varies significantly with the type of nonlinear objective function in combination with the underlying combinatorial structure. Numerous boundary cases of complexity emerge, which sometimes surprisingly lead even to polynomial time algorithms. We also cover recent successful approaches for more general classes of problems. Though no positive theoretical efficiency results are available, nor are they likely to ever be available, these seem to be the currently most successful and interesting approaches for solving practical problems. It is our belief that the study of algorithms motivated by theoretical considerations
Copositive and semidefinite relaxations of the quadratic assignment problem
 DISCRETE OPTIM
, 2009
"... Semidefinite relaxations of the quadratic assignment problem (QAP) have recently turned out to provide good approximations to the optimal value of QAP. We take a systematic look at various conic relaxations of QAP. We first show that QAP can equivalently be formulated as a linear program over the co ..."
Abstract

Cited by 32 (3 self)
 Add to MetaCart
(Show Context)
Semidefinite relaxations of the quadratic assignment problem (QAP) have recently turned out to provide good approximations to the optimal value of QAP. We take a systematic look at various conic relaxations of QAP. We first show that QAP can equivalently be formulated as a linear program over the cone of completely positive matrices. Since it is hard to optimize over this cone, we also look at tractable approximations and compare with several relaxations from the literature. We show that several of the wellstudied models are in fact equivalent. It is still a challenging task to solve the strongest of these models to reasonable accuracy on instances of moderate size.