Results 1 - 10
of
470
Online learning for matrix factorization and sparse coding
, 2010
"... Sparse coding—that is, modelling data vectors as sparse linear combinations of basis elements—is widely used in machine learning, neuroscience, signal processing, and statistics. This paper focuses on the large-scale matrix factorization problem that consists of learning the basis set in order to ad ..."
Abstract
-
Cited by 330 (31 self)
- Add to MetaCart
Sparse coding—that is, modelling data vectors as sparse linear combinations of basis elements—is widely used in machine learning, neuroscience, signal processing, and statistics. This paper focuses on the large-scale matrix factorization problem that consists of learning the basis set in order to adapt it to specific data. Variations of this problem include dictionary learning in signal processing, non-negative matrix factorization and sparse principal component analysis. In this paper, we propose to address these tasks with a new online optimization algorithm, based on stochastic approximations, which scales up gracefully to large data sets with millions of training samples, and extends naturally to various matrix factorization formulations, making it suitable for a wide range of learning problems. A proof of convergence is presented, along with experiments with natural images and genomic data demonstrating that it leads to state-of-the-art performance in terms of speed and optimization for both small and large data sets.
Sure independence screening for ultra-high dimensional feature space
, 2006
"... Variable selection plays an important role in high dimensional statistical modeling which nowa-days appears in many areas and is key to various scientific discoveries. For problems of large scale or dimensionality p, estimation accuracy and computational cost are two top concerns. In a recent paper, ..."
Abstract
-
Cited by 283 (26 self)
- Add to MetaCart
Variable selection plays an important role in high dimensional statistical modeling which nowa-days appears in many areas and is key to various scientific discoveries. For problems of large scale or dimensionality p, estimation accuracy and computational cost are two top concerns. In a recent paper, Candes and Tao (2007) propose the Dantzig selector using L1 regularization and show that it achieves the ideal risk up to a logarithmic factor log p. Their innovative procedure and remarkable result are challenged when the dimensionality is ultra high as the factor log p can be large and their uniform uncertainty principle can fail. Motivated by these concerns, we introduce the concept of sure screening and propose a sure screening method based on a correlation learning, called the Sure Independence Screening (SIS), to reduce dimensionality from high to a moderate scale that is below sample size. In a fairly general asymptotic framework, the SIS is shown to have the sure screening property for even exponentially growing dimensionality. As a methodological extension, an iterative SIS (ISIS) is also proposed to enhance its finite sample performance. With dimension reduced accurately from high to below sample size, variable selection can be improved on both speed and accuracy, and can then be ac-
Lasso-type recovery of sparse representations for high-dimensional data
- ANNALS OF STATISTICS
, 2009
"... The Lasso is an attractive technique for regularization and variable selection for high-dimensional data, where the number of predictor variables pn is potentially much larger than the number of samples n. However, it was recently discovered that the sparsity pattern of the Lasso estimator can only ..."
Abstract
-
Cited by 250 (14 self)
- Add to MetaCart
The Lasso is an attractive technique for regularization and variable selection for high-dimensional data, where the number of predictor variables pn is potentially much larger than the number of samples n. However, it was recently discovered that the sparsity pattern of the Lasso estimator can only be asymptotically identical to the true sparsity pattern if the design matrix satisfies the so-called irrepresentable condition. The latter condition can easily be violated in the presence of highly correlated variables. Here we examine the behavior of the Lasso estimators if the irrepresentable condition is relaxed. Even though the Lasso cannot recover the correct sparsity pattern, we show that the estimator is still consistent in the ℓ2-norm sense for fixed designs under conditions on (a) the number sn of nonzero components of the vector βn and (b) the minimal singular values of design matrices that are induced by selecting small subsets of variables. Furthermore, a rate of convergence result is obtained on the ℓ2 error with an appropriate choice of the smoothing parameter. The rate is shown to be
A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers
"... ..."
The Convex Geometry of Linear Inverse Problems
, 2010
"... In applications throughout science and engineering one is often faced with the challenge of solving an ill-posed inverse problem, where the number of available measurements is smaller than the dimension of the model to be estimated. However in many practical situations of interest, models are constr ..."
Abstract
-
Cited by 189 (20 self)
- Add to MetaCart
In applications throughout science and engineering one is often faced with the challenge of solving an ill-posed inverse problem, where the number of available measurements is smaller than the dimension of the model to be estimated. However in many practical situations of interest, models are constrained structurally so that they only have a few degrees of freedom relative to their ambient dimension. This paper provides a general framework to convert notions of simplicity into convex penalty functions, resulting in convex optimization solutions to linear, underdetermined inverse problems. The class of simple models considered are those formed as the sum of a few atoms from some (possibly infinite) elementary atomic set; examples include well-studied cases such as sparse vectors (e.g., signal processing, statistics) and low-rank matrices (e.g., control, statistics), as well as several others including sums of a few permutations matrices (e.g., ranked elections, multiobject tracking), low-rank tensors (e.g., computer vision, neuroscience), orthogonal matrices (e.g., machine learning), and atomic measures (e.g., system identification). The convex programming formulation is based on minimizing the norm induced by the convex hull of the atomic set; this norm is referred to as the atomic norm. The facial
Structured variable selection with sparsity-inducing norms
, 2011
"... We consider the empirical risk minimization problem for linear supervised learning, with regularization by structured sparsity-inducing norms. These are defined as sums of Euclidean norms on certain subsets of variables, extending the usual ℓ1-norm and the group ℓ1-norm by allowing the subsets to ov ..."
Abstract
-
Cited by 187 (27 self)
- Add to MetaCart
We consider the empirical risk minimization problem for linear supervised learning, with regularization by structured sparsity-inducing norms. These are defined as sums of Euclidean norms on certain subsets of variables, extending the usual ℓ1-norm and the group ℓ1-norm by allowing the subsets to overlap. This leads to a specific set of allowed nonzero patterns for the solutions of such problems. We first explore the relationship between the groups defining the norm and the resulting nonzero patterns, providing both forward and backward algorithms to go back and forth from groups to patterns. This allows the design of norms adapted to specific prior knowledge expressed in terms of nonzero patterns. We also present an efficient active set algorithm, and analyze the consistency of variable selection for least-squares linear regression in low and high-dimensional settings.
Information-theoretic limits on sparsity recovery in the high-dimensional and noisy setting
, 2007
"... Abstract—The problem of sparsity pattern or support set recovery refers to estimating the set of nonzero coefficients of an un-3 p known vector 2 based on a set of n noisy observations. It arises in a variety of settings, including subset selection in regression, graphical model selection, signal de ..."
Abstract
-
Cited by 131 (2 self)
- Add to MetaCart
(Show Context)
Abstract—The problem of sparsity pattern or support set recovery refers to estimating the set of nonzero coefficients of an un-3 p known vector 2 based on a set of n noisy observations. It arises in a variety of settings, including subset selection in regression, graphical model selection, signal denoising, compressive sensing, and constructive approximation. The sample complexity of a given method for subset recovery refers to the scaling of the required sample size n as a function of the signal dimension p, sparsity index k (number of non-zeroes in 3), as well as the minimum value min of 3 over its support and other parameters of measurement matrix. This paper studies the information-theoretic limits of sparsity recovery: in particular, for a noisy linear observation model based on random measurement matrices drawn from general Gaussian measurement matrices, we derive both a set of sufficient conditions for exact support recovery using an exhaustive search decoder, as well as a set of necessary conditions that any decoder, regardless of its computational complexity, must satisfy for exact support recovery. This analysis of fundamental limits complements our previous work on sharp thresholds for support set recovery over the same set of random measurement ensembles using the polynomial-time Lasso method (`1-constrained quadratic programming). Index Terms—Compressed sensing, `1-relaxation, Fano’s method, high-dimensional statistical inference, information-theoretic
Nuclear norm penalization and optimal rates for noisy low rank matrix completion.
- Annals of Statistics,
, 2011
"... AbstractThis paper deals with the trace regression model where n entries or linear combinations of entries of an unknown m1 × m2 matrix A0 corrupted by noise are observed. We propose a new nuclear norm penalized estimator of A0 and establish a general sharp oracle inequality for this estimator for ..."
Abstract
-
Cited by 107 (7 self)
- Add to MetaCart
(Show Context)
AbstractThis paper deals with the trace regression model where n entries or linear combinations of entries of an unknown m1 × m2 matrix A0 corrupted by noise are observed. We propose a new nuclear norm penalized estimator of A0 and establish a general sharp oracle inequality for this estimator for arbitrary values of n, m1, m2 under the condition of isometry in expectation. Then this method is applied to the matrix completion problem. In this case, the estimator admits a simple explicit form and we prove that it satisfies oracle inequalities with faster rates of convergence than in the previous works. They are valid, in particular, in the high-dimensional setting m1m2 n. We show that the obtained rates are optimal up to logarithmic factors in a minimax sense and also derive, for any fixed matrix A0, a nonminimax lower bound on the rate of convergence of our estimator, which coincides with the upper bound up to a constant factor. Finally, we show that our procedure provides an exact recovery of the rank of A0 with probability close to 1. We also discuss the statistical learning setting where there is no underlying model determined by A0 and the aim is to find the best trace regression model approximating the data.