Results 1 - 10
of
405
The Drosha-DGCR8 complex in primary microRNA processing
- Genes Dev
, 2004
"... RNase III proteins play key roles in microRNA (miRNA) biogenesis. The nuclear RNase III Drosha cleaves primary miRNAs (pri-miRNAs) to release hairpin-shaped pre-miRNAs that are subsequently cut by the cytoplasmic RNase III Dicer to generate mature miRNAs. While Dicer (class III) and other simple RNa ..."
Abstract
-
Cited by 220 (4 self)
- Add to MetaCart
(Show Context)
RNase III proteins play key roles in microRNA (miRNA) biogenesis. The nuclear RNase III Drosha cleaves primary miRNAs (pri-miRNAs) to release hairpin-shaped pre-miRNAs that are subsequently cut by the cytoplasmic RNase III Dicer to generate mature miRNAs. While Dicer (class III) and other simple RNase III proteins (class I) have been studied intensively, the class II enzyme Drosha remains to be characterized. Here we dissected the action mechanism of human Drosha by generating mutants and by characterizing its new interacting partner, DGCR8. The basic action mechanism of Drosha was found to be similar to that of human Dicer; the RNase III domains A and B form an intramolecular dimer and cleave the 3 and 5 strands of the stem, respectively. Human Drosha fractionates at ∼650 kDa, indicating that Drosha functions as a large complex. In this complex, Drosha interacts with DGCR8, which contains two double-stranded RNA (dsRNA)-binding domains. By RNAi and biochemical reconstitution, we show that DGCR8 may be an essential component of the pri-miRNA processing complex, along with Drosha. Based on these results, we propose a model for the action mechanism of class II RNase III proteins. [Keywords: microRNA; Drosha; DGCR8; processing] Supplemental material is available at
Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex
- Cell
, 2006
"... The Drosha-DGCR8 complex initiates micro-RNA maturation by precise cleavage of the stem loops that are embedded in primary transcripts (pri-miRNAs). Here we propose a model for this process that is based upon evidence from both computational and biochemical analyses. A typical metazoan pri-miRNA con ..."
Abstract
-
Cited by 133 (1 self)
- Add to MetaCart
(Show Context)
The Drosha-DGCR8 complex initiates micro-RNA maturation by precise cleavage of the stem loops that are embedded in primary transcripts (pri-miRNAs). Here we propose a model for this process that is based upon evidence from both computational and biochemical analyses. A typical metazoan pri-miRNA consists of a stem of 33 bp, with a terminal loop and flanking segments. The terminal loop is unessential, whereas the flanking ssRNA segments are critical for processing. The cleavage site is determined mainly by the distance ( 11 bp) from the stem-ssRNA junction. Purified DGCR8, but not Drosha, interacts with pri-miRNAs both directly and specifically, and the flanking ssRNA segments are vital for this binding to occur. Thus, DGCR8 may function as the molecular anchor that measures the distance from the dsRNA-ssRNA junction. Our current study thus facilitates the prediction of novel micro-RNAs and will assist in the rational design of small hairpin RNAs for RNA interference.
Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes
- Cell 2005
"... In the Drosophila and mammalian RNA interference pathways, siRNAs direct the protein Argonaute2 (Ago2) to cleave corresponding mRNA targets, silencing their expression. Ago2 is the catalytic component of the RNAi enzyme complex, RISC. For each siRNA duplex, only one strand, the guide, is assembled i ..."
Abstract
-
Cited by 121 (2 self)
- Add to MetaCart
(Show Context)
In the Drosophila and mammalian RNA interference pathways, siRNAs direct the protein Argonaute2 (Ago2) to cleave corresponding mRNA targets, silencing their expression. Ago2 is the catalytic component of the RNAi enzyme complex, RISC. For each siRNA duplex, only one strand, the guide, is assembled into the active RISC; the other strand, the passenger, is destroyed. An ATP-dependent helicase has been proposed first to separate the two siRNA strands, then the resulting single-stranded guide is thought to bind Ago2. Here, we show that Ago2 instead directly receives the double-stranded siRNA from the RISC assembly machinery. Ago2 then cleaves the siRNA passenger strand, thereby liberating the single-stranded guide. For siRNAs, virtually all RISC is assembled through this cleavage-assisted mechanism. In contrast, passenger-strand cleavage is not important for the incorporation of miRNAs that derive from mismatched duplexes.
Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res.
, 2004
"... ABSTRACT In the present study, the relationship between short interfering RNA (siRNA) sequence and RNA interference (RNAi) effect was extensively analyzed using 62 targets of four exogenous and two endogenous genes and three mammalian and Drosophila cells. We present the rules that may govern siRNA ..."
Abstract
-
Cited by 109 (13 self)
- Add to MetaCart
(Show Context)
ABSTRACT In the present study, the relationship between short interfering RNA (siRNA) sequence and RNA interference (RNAi) effect was extensively analyzed using 62 targets of four exogenous and two endogenous genes and three mammalian and Drosophila cells. We present the rules that may govern siRNA sequence preference and in accordance with which highly effective siRNAs essential for systematic mammalian functional genomics can be readily designed. These rules indicate that siRNAs which simultaneously satisfy all four of the following sequence conditions are capable of inducing highly effective gene silencing in mammalian cells: (i) A/U at the 5¢ end of the antisense strand; (ii) G/C at the 5¢ end of the sense strand; (iii) at least ®ve A/U residues in the 5¢ terminal one-third of the antisense strand; and (iv) the absence of any GC stretch of more than 9 nt in length. siRNAs opposite in features with respect to the ®rst three conditions give rise to little or no gene silencing in mammalian cells. Essentially the same rules for siRNA sequence preference were found applicable to DNA-based RNAi in mammalian cells and in ovo RNAi using chick embryos. In contrast to mammalian and chick cells, little siRNA sequence preference could be detected in Drosophila in vivo RNAi.
Sfold web server for statistical folding and rational design of nucleic acids
- Nucleic Acids Res
, 2004
"... nucleic acids ..."
(Show Context)
Human embryonic stem cells express a unique set of microRNAs.
- Dev. Biol.
, 2004
"... Abstract Human embryonic stem (hES) cells are pluripotent cell lines established from the explanted inner cell mass of human blastocysts. Despite their importance for human embryology and regenerative medicine, studies on hES cells, unlike those on mouse ES (mES) cells, have been hampered by diffic ..."
Abstract
-
Cited by 106 (4 self)
- Add to MetaCart
(Show Context)
Abstract Human embryonic stem (hES) cells are pluripotent cell lines established from the explanted inner cell mass of human blastocysts. Despite their importance for human embryology and regenerative medicine, studies on hES cells, unlike those on mouse ES (mES) cells, have been hampered by difficulties in culture and by scant knowledge concerning the regulatory mechanism. Recent evidence from plants and animals indicates small RNAs of approximately 22 nucleotides (nt), collectively named microRNAs, play important roles in developmental regulation. Here we describe 36 miRNAs (from 32 stem-loops) identified by cDNA cloning in hES cells. Importantly, most of the newly cloned miRNAs are specifically expressed in hES cells and downregulated during development into embryoid bodies (EBs), while miRNAs previously reported from other human cell types are poorly expressed in hES cells. We further show that some of the ES-specific miRNA genes are highly related to each other, organized as clusters, and transcribed as polycistronic primary transcripts. These miRNA gene families have murine homologues that have similar genomic organizations and expression patterns, suggesting that they may operate key regulatory networks conserved in mammalian pluripotent stem cells. The newly identified hES-specific miRNAs may also serve as molecular markers for the early embryonic stage and for undifferentiated hES cells.
Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis
- Cell
, 2005
"... In higher eukaryotes, miRNAs and siRNAs guide translational inhibition, mRNA cleavage, or chromatin regulation. We found that the antisense overlapping gene pair of D 1-pyrroline-5-carboxylate dehydrogenase (P5CDH), a stress-related gene, and SRO5, a gene of unknown function, generates two types of ..."
Abstract
-
Cited by 101 (2 self)
- Add to MetaCart
(Show Context)
In higher eukaryotes, miRNAs and siRNAs guide translational inhibition, mRNA cleavage, or chromatin regulation. We found that the antisense overlapping gene pair of D 1-pyrroline-5-carboxylate dehydrogenase (P5CDH), a stress-related gene, and SRO5, a gene of unknown function, generates two types of siRNAs. When both transcripts are present, a 24-nt siRNA is formed by a biogenesis pathway dependent on DCL2, RDR6, SGS3, and NRPD1A. Initial cleavage of the P5CDH transcript guided by the 24-nt siRNA establishes a phase for the subsequent generation of 21-nt siRNAs by DCL1 and further cleavage of P5CDH transcripts. The expression of SRO5 is induced by salt, and this induction is required to initiate siRNA formation. Our data suggest that the P5CDH and SRO5 proteins are also functionally related, and that the P5CDH-SRO5 gene pair defines a mode of siRNA function and biogenesis that may be applied to other natural cis-antisense gene pairs in eukaryotic genomes.
A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish
- Cell
, 2007
"... Piwi proteins specify an animal-specific subclass of the Argonaute family that, in vertebrates, is specifically expressed in germ cells. We demonstrate that zebrafish Piwi (Ziwi) is expressed in both the male and the female gonad and is a component of a germlinespecifying structure called nuage. Los ..."
Abstract
-
Cited by 78 (1 self)
- Add to MetaCart
(Show Context)
Piwi proteins specify an animal-specific subclass of the Argonaute family that, in vertebrates, is specifically expressed in germ cells. We demonstrate that zebrafish Piwi (Ziwi) is expressed in both the male and the female gonad and is a component of a germlinespecifying structure called nuage. Loss of Ziwi function results in a progressive loss of germ cells due to apoptosis during larval development. In animals that have reduced Ziwi function, germ cells are maintained but display abnormal levels of apoptosis in adults. In mammals, Piwi proteins associate with approximately 29-nucleotide-long, testis-specific RNA molecules called piRNAs. Here we show that zebrafish piRNAs are present in both ovary and testis. Many of these are derived from transposons, implicating a role for piRNAs in the silencing of repetitive elements in vertebrates. Furthermore, we show that piRNAs are Dicer independent and that their 3 0 end likely carries a 2 0 O-Methyl modification.
Sequencespecific inhibition of small RNA function. PLoS Biol
, 2004
"... Hundreds of microRNAs (miRNAs) and endogenous small interfering RNAs (siRNAs) have been identified from both plants and animals, yet little is known about their biochemical modes of action or biological functions. Here we report that 29-O-methyl oligonucleotides can act as irreversible, stoichiometr ..."
Abstract
-
Cited by 71 (4 self)
- Add to MetaCart
Hundreds of microRNAs (miRNAs) and endogenous small interfering RNAs (siRNAs) have been identified from both plants and animals, yet little is known about their biochemical modes of action or biological functions. Here we report that 29-O-methyl oligonucleotides can act as irreversible, stoichiometric inhibitors of small RNA function. We show that a29-O-methyl oligonucleotide complementary to an siRNA can block mRNA cleavage in Drosophila embryo lysates and HeLa cell S100 extracts and in cultured human HeLa cells. In Caenorhabditis elegans, injection of the 29-O-methyl oligonucleotide complementary to the miRNA let-7 can induce a let-7 loss-of-function phenocopy. Using an immobilized 29-O-methyl oligonucleotide, we show that the C. elegans Argonaute proteins ALG-1 and ALG-2, which were previously implicated in let-7 function through genetic studies, are constituents of a let-7-containing protein–RNA complex. Thus, we demonstrate that 29-O-methyl RNA oligonucleotides can provide an efficient and straightforward way to block small RNA function in vivo and furthermore can be used to identify small RNA-associated proteins that mediate RNA silencing pathways.
Molecular basis for target RNA recognition and cleavage by human RISC. Cell 130:101–112
, 2007
"... a ribonucleoprotein particle composed of a single-stranded short interfering RNA (siRNA) and an endonucleolytically active Argonaute protein, capable of cleaving mRNAs complementary to the siRNA. The mechanism by which RISC cleaves a target RNA is well understood, however it remains enigmatic how RI ..."
Abstract
-
Cited by 70 (0 self)
- Add to MetaCart
(Show Context)
a ribonucleoprotein particle composed of a single-stranded short interfering RNA (siRNA) and an endonucleolytically active Argonaute protein, capable of cleaving mRNAs complementary to the siRNA. The mechanism by which RISC cleaves a target RNA is well understood, however it remains enigmatic how RISC finds its target RNA. Here, we show, both in vitro and in vivo, that the accessibility of the target site correlates directly with the efficiency of cleavage, demonstrating that RISC is unable to unfold structured RNA. In the course of target recognition, RISC transiently contacts singlestranded RNA nonspecifically and promotes siRNA-target RNA annealing. Furthermore, the 5 0 part of the siRNA within RISC creates a thermodynamic threshold that determines the stable association of RISC and the target RNA. We therefore provide mechanistic insights by revealing features of RISC and target RNAs that are crucial to achieve efficiency and specificity in RNA interference.