Results 1  10
of
120
Distinctive Image Features from ScaleInvariant Keypoints
, 2003
"... This paper presents a method for extracting distinctive invariant features from images, which can be used to perform reliable matching between different images of an object or scene. The features are invariant to image scale and rotation, and are shown to provide robust matching across a a substa ..."
Abstract

Cited by 8955 (21 self)
 Add to MetaCart
This paper presents a method for extracting distinctive invariant features from images, which can be used to perform reliable matching between different images of an object or scene. The features are invariant to image scale and rotation, and are shown to provide robust matching across a a substantial range of affine distortion, addition of noise, change in 3D viewpoint, and change in illumination. The features are highly distinctive, in the sense that a single feature can be correctly matched with high probability against a large database of features from many images. This paper also describes an approach to using these features for object recognition. The recognition proceeds by matching individual features to a database of features from known objects using a fast nearestneighbor algorithm, followed by a Hough transform to identify clusters belonging to a single object, and finally performing verification through leastsquares solution for consistent pose parameters. This approach to recognition can robustly identify objects among clutter and occlusion while achieving near realtime performance.
Determining the Epipolar Geometry and its Uncertainty: A Review
 International Journal of Computer Vision
, 1998
"... Two images of a single scene/object are related by the epipolar geometry, which can be described by a 3×3 singular matrix called the essential matrix if images' internal parameters are known, or the fundamental matrix otherwise. It captures all geometric information contained in two i ..."
Abstract

Cited by 401 (9 self)
 Add to MetaCart
(Show Context)
Two images of a single scene/object are related by the epipolar geometry, which can be described by a 3&times;3 singular matrix called the essential matrix if images' internal parameters are known, or the fundamental matrix otherwise. It captures all geometric information contained in two images, and its determination is very important in many applications such as scene modeling and vehicle navigation. This paper gives an introduction to the epipolar geometry, and provides a complete review of the current techniques for estimating the fundamental matrix and its uncertainty. A wellfounded measure is proposed to compare these techniques. Projective reconstruction is also reviewed. The software which we have developed for this review is available on the Internet.
3D Model Acquisition from Extended Image Sequences
, 1995
"... This paper describes the extraction of 3D geometrical data from image sequences, for the purpose of creating 3D models of objects in the world. The approach is uncalibrated  camera internal parameters and camera motion are not known or required. Processing an image sequence is underpinned by token ..."
Abstract

Cited by 236 (29 self)
 Add to MetaCart
This paper describes the extraction of 3D geometrical data from image sequences, for the purpose of creating 3D models of objects in the world. The approach is uncalibrated  camera internal parameters and camera motion are not known or required. Processing an image sequence is underpinned by token correspondences between images. We utilise matching techniques which are both robust (detecting and discarding mismatches) and fully automatic. The matched tokens are used to compute 3D structure, which is initialised as it appears and then recursively updated over time. We describe a novel robust estimator of the trifocal tensor, based on a minimum number of token correspondences across an image triplet; and a novel tracking algorithm in which corners and line segments are matched over image triplets in an integrated framework. Experimental results are provided for a variety of scenes, including outdoor scenes taken with a handheld camcorder. Quantitative statistics are included to asses...
Selfcalibration and metric reconstruction in spite of varying and unknown internal camera parameters
 INTERNATIONAL JOURNAL OF COMPUTER VISION
, 1999
"... In this paper the theoretical and practical feasibility of selfcalibration in the presence of varying intrinsic camera parameters is under investigation. The paper’s main contribution is to propose a selfcalibration method which efficiently deals with all kinds of constraints on the intrinsic came ..."
Abstract

Cited by 195 (13 self)
 Add to MetaCart
In this paper the theoretical and practical feasibility of selfcalibration in the presence of varying intrinsic camera parameters is under investigation. The paper’s main contribution is to propose a selfcalibration method which efficiently deals with all kinds of constraints on the intrinsic camera parameters. Within this framework a practical method is proposed which can retrieve metric reconstruction from image sequences obtained with uncalibrated zooming/focusing cameras. The feasibility of the approach is illustrated on real and synthetic examples. Besides this a theoretical proof is given which shows that the absence of skew in the image plane is sufficient to allow for selfcalibration. A counting argument is developed which—depending on the set of constraints—gives the minimum sequence length for selfcalibration and a method to detect critical motion sequences is proposed.
Heteroscedastic Regression in Computer Vision: Problems with Bilinear Constraint
 International Journal of Computer Vision
"... We present an algorithm to estimate the parameters of a linear model in the presence of heteroscedastic noise, i.e., each data point having a different covariance matrix. ..."
Abstract

Cited by 97 (7 self)
 Add to MetaCart
We present an algorithm to estimate the parameters of a linear model in the presence of heteroscedastic noise, i.e., each data point having a different covariance matrix.
Robust SuperResolution
 in In Proc. of the IEEE Workshop on Applications of Computer Vision
, 2001
"... A robust approach for super resolution is presented, which is especially valuable in the presence of outliers. Such outliers may be due to motion erros, inaccurate blur models, noise, moving objects, motion blur etc. This tobusiness is needed since superresolution methods are very sensitive to such ..."
Abstract

Cited by 92 (0 self)
 Add to MetaCart
A robust approach for super resolution is presented, which is especially valuable in the presence of outliers. Such outliers may be due to motion erros, inaccurate blur models, noise, moving objects, motion blur etc. This tobusiness is needed since superresolution methods are very sensitive to such errors.
Affine Structure from Line Correspondences with Uncalibrated Affine Cameras
 IEEE Trans. Pattern Analysis and Machine Intelligence
, 1997
"... This paper presents a linear algorithm for recovering 3D affine shape and motion from line correspondences with uncalibrated affine cameras. The algorithm requires a minimum of seven line correspondences over three views. The key idea is the introduction of a onedimensional projective camera. This ..."
Abstract

Cited by 83 (9 self)
 Add to MetaCart
(Show Context)
This paper presents a linear algorithm for recovering 3D affine shape and motion from line correspondences with uncalibrated affine cameras. The algorithm requires a minimum of seven line correspondences over three views. The key idea is the introduction of a onedimensional projective camera. This converts 3D affine reconstruction of "line directions" into 2D projective reconstruction of "points". In addition, a linebased factorisation method is also proposed to handle redundant views. Experimental results both on simulated and real image sequences validate the robustness and the accuracy of the algorithm.
S.: Counting crowded moving objects
, 2006
"... In its full generality, motion analysis of crowded objects necessitates recognition and segmentation of each moving entity. The difficulty of these tasks increases considerably with occlusions and therefore with crowding. When the objects are constrained to be of the same kind, however, partitioning ..."
Abstract

Cited by 82 (1 self)
 Add to MetaCart
(Show Context)
In its full generality, motion analysis of crowded objects necessitates recognition and segmentation of each moving entity. The difficulty of these tasks increases considerably with occlusions and therefore with crowding. When the objects are constrained to be of the same kind, however, partitioning of densely crowded semirigid objects can be accomplished by means of clustering tracked feature points. We base our approach on a highly parallelized version of the KLT tracker in order to process the video into a set of feature trajectories. While such a set of trajectories provides a substrate for motion analysis, their unequal lengths and fragmented nature present difficulties for subsequent processing. To address this, we propose a simple means of spatially and temporally conditioning the trajectories. Given this representation, we integrate it with a learned object descriptor to achieve a segmentation of the constituent motions. We present experimental results for the problem of estimating the number of moving objects in a dense crowd as a function of time. 1
Automated reconstruction of 3D scenes from sequences of images
"... Modelling of 3D objects from image sequences is a challenging problem and has been an important research topic in the areas of photogrammetry and computer vision for many years. In this paper, a system is presented which automatically extracts a textured 3D surface model from a sequence of images of ..."
Abstract

Cited by 72 (6 self)
 Add to MetaCart
Modelling of 3D objects from image sequences is a challenging problem and has been an important research topic in the areas of photogrammetry and computer vision for many years. In this paper, a system is presented which automatically extracts a textured 3D surface model from a sequence of images of a scene. The system can deal with unknown camerasettings. In addition, the parameters of this camera are allowed to change during acquisition (e.g. by zooming or focussing). No prior knowledge about the scene is necessary to build the 3D models. Therefore, this system offers a high degree of flexibility. The system is based on stateoftheart algorithms recently developed in computer vision. The 3D modelling task is decomposed into a number of succesive steps. Gradually, more knowledge of the scene and the camera setup is retrieved. At this point, the obtained accuracy is not yet at the level required for most metrology applications, but the visual quality is very convincing. This system has been applied to a number of applications in archaeology. The Roman site of Sagalassos (southwest Turkey) was used as a test case to illustrate the potential of this new approach. Key words: 3D reconstruction; selfcalibration; image matching; virtual reality; uncalibrated camera; image sequences; archaeology # Corresponding author. Tel.: +3216321064; Fax: +3216321723; Email: Marc.Pollefeys@esat.kuleuven.ac.be (M. Pollefeys). 1 1.
A global solution to sparse correspondence problems
 IEEE Transactions on pattern Analysis and Machine Intelligence
, 2003
"... Abstract—We propose a new methodology for reliably solving the correspondence problem between sparse sets of points of two or more images. This is a key step in most problems of computer vision and, so far, no general method exists to solve it. Our methodology is able to handle most of the commonly ..."
Abstract

Cited by 72 (3 self)
 Add to MetaCart
(Show Context)
Abstract—We propose a new methodology for reliably solving the correspondence problem between sparse sets of points of two or more images. This is a key step in most problems of computer vision and, so far, no general method exists to solve it. Our methodology is able to handle most of the commonly used assumptions in a unique formulation, independent of the domain of application and type of features. It performs correspondence and outlier rejection in a single step and achieves global optimality with feasible computation. Feature selection and correspondence are first formulated as an integer optimization problem. This is a blunt formulation, which considers the whole combinatorial space of possible point selections and correspondences. To find its global optimal solution, we build a concave objective function and relax the search domain into its convexhull. The special structure of this extended problem assures its equivalence to the original one, but it can be optimally solved by efficient algorithms that avoid combinatorial search. This methodology can use any criterion provided it can be translated into cost functions with continuous second derivatives. Index Terms—Correspondence problem, linear and concave programming, sparse stereo. 1