Results 1 
4 of
4
From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images
, 2007
"... A fullrank matrix A ∈ IR n×m with n < m generates an underdetermined system of linear equations Ax = b having infinitely many solutions. Suppose we seek the sparsest solution, i.e., the one with the fewest nonzero entries: can it ever be unique? If so, when? As optimization of sparsity is combin ..."
Abstract

Cited by 423 (37 self)
 Add to MetaCart
(Show Context)
A fullrank matrix A ∈ IR n×m with n < m generates an underdetermined system of linear equations Ax = b having infinitely many solutions. Suppose we seek the sparsest solution, i.e., the one with the fewest nonzero entries: can it ever be unique? If so, when? As optimization of sparsity is combinatorial in nature, are there efficient methods for finding the sparsest solution? These questions have been answered positively and constructively in recent years, exposing a wide variety of surprising phenomena; in particular, the existence of easilyverifiable conditions under which optimallysparse solutions can be found by concrete, effective computational methods. Such theoretical results inspire a bold perspective on some important practical problems in signal and image processing. Several wellknown signal and image processing problems can be cast as demanding solutions of undetermined systems of equations. Such problems have previously seemed, to many, intractable. There is considerable evidence that these problems often have sparse solutions. Hence, advances in finding sparse solutions to underdetermined systems energizes research on such signal and image processing problems – to striking effect. In this paper we review the theoretical results on sparse solutions of linear systems, empirical
CMB data analysis and sparsity
, 2008
"... The statistical analysis of the soon to come Planck satellite CMB data will help set tighter bounds on major cosmological parameters. On the way, a number of practical difficulties need to be tackled, notably that several other astrophysical sources emit radiation in the frequency range of CMB obser ..."
Abstract

Cited by 7 (2 self)
 Add to MetaCart
The statistical analysis of the soon to come Planck satellite CMB data will help set tighter bounds on major cosmological parameters. On the way, a number of practical difficulties need to be tackled, notably that several other astrophysical sources emit radiation in the frequency range of CMB observations. Some level of residual contributions, most significantly in the galactic region and at the locations of strong radio point sources will unavoidably contaminate the estimated spherical CMB map. Masking out these regions is common practice but the gaps in the data need proper handling. In order to restore the stationarity of a partly incomplete CMB map and thus lower the impact of the gaps on nonlocal statistical tests, we developed an inpainting algorithm on the sphere based on a sparse representation of the data, to fill in and interpolate across the masked regions.
Contents
"... Preface vii 1 The wavelet transform 1 1.1 Multiscale methods........................ 1 1.1.1 Some perspectives on the wavelet transform...... 2 ..."
Abstract
 Add to MetaCart
Preface vii 1 The wavelet transform 1 1.1 Multiscale methods........................ 1 1.1.1 Some perspectives on the wavelet transform...... 2